Как устроена подводная лодка: описание, характеристики и принцип работы. Подводные лодки Военно-морского флота России (дизель-электрические) Какие приборы есть в подводной лодке

Принципы и устройство подводной лодки

Принципы действия и устройство подводной лодки рассматриваются вместе, так как они тесно связаны. Определяющим является принцип подводного плавания. Отсюда, основные требования к ПЛ это:

  • выдерживать давление воды в подводном положении, то есть обеспечивать прочность и водонепроницаемость корпуса.
  • обеспечивать управляемые погружение, всплытие, и смену глубины.
  • иметь оптимальное с точки зрения ходкости обтекание
  • сохранять работоспособность (боеспособность) во всём диапазоне эксплуатации по физическим, климатическим условиям и условиям автономности.

Устройство одной из первых субмарин, «Пионер», 1862

Схема устройства подводной лодки

Прочность и водонепроницаемость

Обеспечение прочности является самой трудной задачей, и потому главное внимание уделяется ей. В случае двухкорпусной конструкции давление воды (избыточные 1 кгс/см² на каждые 10 м глубины) принимает на себя прочный корпус , имеющий оптимальную форму для противостояния давлению. Обтекание обеспечивается лёгким корпусом . В ряде случаев при однокорпусной конструкции прочный корпус имеет форму одновременно удовлетворяющую и условиям противостояния давлению, и условиям обтекаемости. Например, такую форму имел корпус подводной лодки Джевецкого , или британской сверхмалой субмарины X-Craft .

Прочный корпус (ПК)

От того, насколько прочен корпус, какое давление воды он может выдерживать, зависит важнейшая тактическая характеристика ПЛ - глубина погружения. Глубина определяет скрытность и неуязвимость лодки, чем больше глубина погружения, тем сложнее обнаружить лодку и тем сложнее поразить её. Наиболее важны рабочая глубина - максимальная глубина, на которой лодка может находиться неограниченно долго без возникновения остаточных деформаций, и предельная глубина - максимальная глубина, на которую лодка еще может погружаться без разрушения, пусть и с остаточными деформациями.

Разумеется, прочность должна сопровождаться водонепроницаемостью. Иначе лодка, как и всякий корабль, просто не сможет плавать.

Перед выходом в море или перед походом, в ходе пробного погружения, на ПЛ проверяется прочность и герметичность прочного корпуса. Непосредственно перед погружением из лодки с помощью компрессора (на дизельных ПЛ - главного дизеля) частью откачивается воздух, чтобы создать разрежение. Подается команда «слушать в отсеках». Одновременно следят за отсечным давлением. Если слышен характерный свист воздуха, и/или давление быстро восстанавливается до атмосферного, прочный корпус негерметичен. После погружения в позиционное положение подается команда «осмотреться в отсеках», и корпус и арматура визуально проверяются на течи.

Лёгкий корпус (ЛК)

Обводы легкого корпуса обеспечивают оптимальное обтекание на расчетном ходу. В подводном положении внутри легкого корпуса находится вода, - внутри и снаружи него давление одинаково и ему нет надобности быть прочным, отсюда его название. В легком корпусе располагают оборудование, не требующее изоляции от забортного давления: балластные и топливные (на дизельных ПЛ) цистерны, антенны ГАС , тяги рулевого устройства.

Типы конструкции корпуса

  • Однокорпусные: цистерны главного балласта (ЦГБ) находятся внутри прочного корпуса. Легкий корпус только в оконечностях. Элементы набора, подобно надводному кораблю, находятся внутри прочного корпуса.
    Достоинства такой конструкции: экономия размеров и веса, соответственно меньшие потребные мощности главных механизмов, лучшая подводная маневренность.
    Недостатки: уязвимость прочного корпуса, малый запас плавучести, необходимость выполнять ЦГБ прочными.
    Исторически, первые ПЛ были однокорпусными. Большинство американских АПЛ также однокорпусные.
  • Двухкорпусные: (ЦГБ внутри легкого корпуса, легкий корпус полностью закрывает прочный). У двухкорпусных ПЛ элементы набора обычно находятся снаружи прочного корпуса, чтобы сэкономить место внутри.
    Достоинства: повышенный запас плавучести, более живучая конструкция.
    Недостатки: увеличение размеров и веса, усложнение балластных систем, меньшая маневренность, в том числе при погружении и всплытии.
    По такой схеме построено большинство русских/советских лодок. Для них стандартное требование - обеспечение непотопляемости при затоплении любого отсека и прилегающих к нему ЦГБ.
  • Полуторакорпусные: (ЦГБ внутри легкого корпуса, легкий корпус частично закрывает прочный).
    Достоинства полуторакорпусных ПЛ: хорошая маневренность, сокращенное время погружения при достаточно высокой живучести.
    Недостатки: меньший запас плавучести, необходимость помещать больше систем в прочный корпус.
    Такой конструкцией отличались средние ПЛ времен Второй мировой войны , например немецкие типа VII , и первые послевоенные, например тип «Гуппи», США.

Надстройка

Надстройка формирует дополнительный объем над ЦГБ и/или верхнюю палубу ПЛ, для использования в надводном положении. Выполняется лёгкой, в подводном положении заполняется водой. Может играть роль дополнительной камеры над ЦГБ, страхующей цистерны от аварийного заполнения. В ней же располагают устройства, не требующие водонепроницаемости: швартовное, якорное, аварийные буи. В верхней части цистерн находятся клапана вентиляции (КВ), под ними - аварийные захлопки (АЗ). Иначе их называют первыми и вторыми запорами ЦГБ.

Прочная рубка (вид через нижний рубочный люк)

Прочная рубка

Устанавливается на прочном корпусе сверху. Выполняется водонепроницаемой. Является шлюзом для доступа в ПЛ через главный люк, спасательной камерой, а часто и боевым постом. Имеет верхний и нижний рубочный люк . Через нее же обычно пропущены шахты перископов . Прочная рубка обеспечивает дополнительную непотопляемость в надводном положении - верхний рубочный люк высоко над ватерлинией , опасность заливания ПЛ волной меньше, повреждение прочной рубки не нарушает герметичности прочного корпуса. При действии под перископом рубка позволяет увеличить его вылет - высоту головки над корпусом, - и тем самым увеличить перископную глубину. Тактически это выгоднее - срочное погружение из-под перископа происходит быстрее.

Ограждение рубки

Реже - ограждение выдвижных устройств. Устанавливается вокруг прочной рубки, чтобы улучшить обтекание ее и выдвижных устройств. Оно же формирует ходовой мостик. Выполняется легким.

Погружение и всплытие

Когда требуется срочное погружение, используют цистерну быстрого погружения (ЦБП, иногда называется цистерной срочного погружения). Ее объем не входит в расчетный запас плавучести, то есть приняв в нее балласт, лодка становится тяжелее окружающей воды, что помогает «провалиться» на глубину. После этого, разумеется, цистерна быстрого погружения немедленно продувается. Она находится в прочном корпусе и выполняется прочной.

В боевой обстановке (в том числе на боевой службе и в походе) немедленно после всплытия лодка принимает воду в ЦБП, и компенсирует ее вес, поддувая главный балласт - сохраняя некоторое избыточное давление в ЦГБ. Таким образом, лодка находится в немедленной готовности к срочному погружению.

Среди важнейших специальных цистерн :

Торпедо- и ракетозаместительные цистерны.

Чтобы сохранить общую нагрузку после выхода торпед или ракет из ТА / шахт, и предотвратить самопроизвольное всплытие, поступившую в них воду (около тонны на каждую торпеду, десятки тонн на ракету) не откачивают за борт, а сливают в специально предназначенные цистерны. Это позволяет не нарушать работы с ЦГБ и ограничить объем уравнительной цистерны.

Если попытаться компенсировать вес торпед и ракет за счет главного балласта, тот должен быть переменным, то есть в ЦГБ должен оставаться пузырь воздуха, а он «гуляет» (подвижен) - наихудшая для дифферентовки ситуация. Погруженная ПЛ при этом практически теряет управляемость , по выражению одного автора, «ведет себя как взбесившаяся лошадь». В меньшей степени это справедливо и для уравнительной цистерны. Но главное, если ею компенсировать большие грузы, придется увеличить ее объем, а значит, количество сжатого воздуха, необходимого для продувания. А запас сжатого воздуха на лодке - самое ценное, его всегда мало и он трудно восполним.

Цистерны кольцевого зазора

Между торпедой (ракетой) и стенкой торпедного аппарата (шахты) всегда имеется зазор, особенно в головной и хвостовой частях. Перед выстрелом наружную крышку торпедного аппарата (шахты) нужно открыть. Сделать это можно, только сравняв давление за бортом и внутри, то есть заполнив ТА (шахту) водой, сообщающейся с забортной. Но если впустить воду непосредственно из-за борта, дифферентовка будет сбита - прямо перед выстрелом.

Чтобы этого избежать, воду, необходимую для заполнения зазора, хранят в специальных цистернах кольцевого зазора (ЦКЗ). Они находятся вблизи ТА или шахт, и заполняются из уравнительной цистерны. После этого для выравнивания давления достаточно перепустить воду из ЦКЗ в ТА, и открыть забортный клапан.

Энергетика и живучесть

Понятно, что ни заполнение и продувка цистерн, ни выстрел торпед или ракет, ни движение или даже вентиляция не происходят сами собой. Подводная лодка - не квартира, где можно открыть форточку, и свежий воздух сам заменит использованный. На все это нужны затраты энергии.

Соответственно, без энергии лодка не может не только двигаться, но сколько-нибудь долго сохранять способность «плавать и стрелять». То есть, энергетика и живучесть - две стороны одного процесса.

Если с движением можно подобрать традиционные для корабля решения - использовать энергию сжигаемого топлива (если для этого достаточно кислорода), или энергию расщепления атома, то для действий, свойственных только подводной лодке, нужны другие источники энергии. Даже ядерный реактор, дающий практически неограниченный ее источник, имеет недостаток - он вырабатывает её только в определённом темпе, и очень неохотно темп меняет. Попытаться получить с него больше мощности значит рисковать, что реакция выйдет из-под контроля - этакий ядерный мини-взрыв.

Значит, нужен какой-то способ запасать энергию, и быстро высвобождать по мере надобности. И сжатый воздух с зарождения подводного плавания остаётся самым лучшим способом. Единственный серьёзный недостаток его в ограниченности запасов. Баллоны для хранения воздуха имеют немалый вес, и тем больше, чем больше давление в них. Это и ставит предел запасам.

Воздушная система

Основная статья: Воздушная система

Сжатый воздух является вторым по значению источником энергии на лодке и, во вторую очередь, даёт запас кислорода. С его помощью производится множество эволюций - от погружения и всплытия до удаления из лодки отходов.

Например, бороться с аварийным затоплением отсеков можно подачей в них сжатого воздуха. Торпеды и ракеты выстреливаются тоже воздухом - по сути, продуванием ТА или шахт.

Воздушная система подразделяется на систему воздуха высокого давления (ВВД), воздуха среднего давления (ВСД) и воздуха низкого давления (ВНД).

Система ВВД является среди них главной. Хранить сжатый воздух выгоднее под высоким давлением - занимает меньше места и аккумулирует больше энергии. Поэтому его хранят в баллонах ВВД, а в другие подсистемы отпускают через редукторы давления.

Пополнение запасов ВВД - долгая и энергоёмкая операция. И конечно, она требует доступа к атмосферному воздуху. Учитывая, что современные лодки большую часть времени проводят под водой, и на перископной глубине стараются тоже не задерживаться, возможностей для пополнения не так много. Сжатый воздух приходится буквально рационировать, и обычно следит за этим лично старший механик (командир БЧ-5).

Движение

Движение, или ход ПЛ - главный потребитель энергии. В зависимости от того, как обеспечивается надводный и подводный ход, все ПЛ можно разделить на два больших типа: с раздельным или с единым двигателем .

Раздельным называется двигатель, который используется только для надводного или только для подводного хода. Единым , соответственно, называется двигатель, который годится для обоих режимов.

Исторически первым двигателем ПЛ был человек. Своей мускульной силой он приводил лодку в движение как на поверхности, так и под водой. То есть, был единым двигателем.

Поиск более мощных и дальноходных двигателей был прямо связан с развитием техники вообще. Он прошёл через паровую машину и различные типы двигателей внутреннего сгорания к дизелю . Но все они имеют общий недостаток - зависимость от атмосферного воздуха. Неизбежно возникает раздельность , то есть нужда во втором двигателе, для подводного хода. Дополнительное требование к двигателям подводных лодок - низкий уровень производимого шума. Бесшумность подлодки в режиме подкрадывания необходима для сохранения её незаметности от противника при выполнении боевых задач в непосредственной близости от него.

Традиционно двигателем подводного хода был и остаётся электромотор , питающийся от аккумуляторной батареи. Он воздухонезависим, достаточно безопасен и приемлем по весу и габаритам. Однако и тут есть серьёзный недостаток - малая ёмкость батареи. Поэтому запас непрерывного подводного хода ограничен. Мало того, он зависит от режима использования. Типичной дизель-электрической ПЛ требуется подзаряжать батарею после каждых 300÷350 миль экономического хода, или каждых 20÷30 миль полного хода. Иными словами, лодка может пройти без подзарядки 3 и более суток со скоростью в 2÷4 узла, или час-полтора со скоростью более 20 узлов. Поскольку вес и объём дизельной ПЛ ограничены, дизель и электромотор выступают в нескольких ролях. Дизель может быть двигателем, или поршневым компрессором , если его вращает электромотор. Тот, в свою очередь, может быть генератором , когда его вращает дизель, или двигателем, когда работает на винт.

Были попытки создать единый парогазовый двигатель. Немецкие ПЛ Вальтера использовали в качестве топлива концентрированную перекись водорода . Она оказалась слишком взрывоопасной, дорогой и нестабильной для широкого применения.

Только с созданием пригодного для ПЛ ядерного реактора появился поистине единый двигатель, дающий ход в любом положении неограниченно долго. Поэтому возникло деление подводных лодок на атомные и неатомные .

Существуют ПЛ с неатомным единым двигателем. Например, шведские лодки типа «Наккен» с двигателем Стирлинга . Однако они лишь удлинили время подводного хода, не избавив лодку от необходимости всплывать для пополнения запасов кислорода. Широкого применения этот двигатель пока не нашёл.

Электро-энергетическая Система (ЭЭС)

Основными элементами системы являются генераторы , преобразователи , хранилища, проводники и потребители энергии.

Поскольку большинство ПЛ в мире - дизель-электрические, они имеют характерные особенности в схеме и составе ЭЭС. В классической системе дизель-электрической ПЛ электромотор используется как обратимая машина, то есть может потреблять ток для движения, или вырабатывать его для зарядки. В такой системе имеются:

Главный дизель . Является двигателем надводного хода и приводом генератора. Также играет второстепенную роль как поршневой компрессор . Главный распределительный щит (ГРЩ). Преобразует ток генератора в постоянный ток зарядки АБ или наоборот, и раздаёт энергию потребителям. Гребной электродвигатель (ГЭД). Основным его назначением является работа на винт. Может также играть роль генератора . Аккумуляторная батарея (АБ). Запасает и хранит электроэнергию от генератора, выдаёт её для расходования когда генератор не работает - прежде всего под водой. Электроарматура . Кабеля , прерыватели, изоляторы . Их назначение - связь остальных элементов системы, передача энергии потребителям и предотвращение её утечек.

Для такой ПЛ характерными режимами являются:

  1. Винт-зарядка . Дизель одного борта вращает гребной винт, дизель другого работает на генератор, заряжая АБ.
  2. Винт-расход . Дизель одного борта вращает гребной винт, дизель другого работает на генератор, который снабжает потребителей.
  3. Частичное электродвижение . Дизеля работают на генератор, часть энергии которого потребляется электродвигателем, другая часть идёт на зарядку АБ.
  4. Полное электродвижение . Дизеля работают на генератор, вся энергия которого потребляется электродвигателем.

В некоторых случаях в системе имеются ещё отдельные дизель-генераторы (ДГ) и электродвигатель экономического хода (ЭДЭХ). Последний используется для малошумного экономичного режима «подкрадывания» к цели.

Основной проблемой хранения и передачи электроэнергии является сопротивление элементов ЭЭС. В отличие от наземных агрегатов, сопротивление в условиях высокой влажности и насыщенности оборудованием ПЛ - величина сильно переменная. Одной из постоянных задач команды электриков является контроль изоляции и восстановление её сопротивления до штатного.

Второй серьёзной проблемой является состояние аккумуляторных батарей. В результате химической реакции в них генерируется тепло и выделяется водород . Если свободный водород накопится в определённой концентрации, он образует с кислородом воздуха гремучую смесь, способную взрываться не хуже глубинной бомбы. Перегретая же батарея в тесном трюме служит причиной весьма характерного для лодок ЧП - пожара в аккумуляторной яме.

При попадании в батарею морской воды выделяется хлор , образующий крайне ядовитые и взрывоопасные соединения. Смесь водорода с хлором взрывается даже от света. Учитывая, что вероятность попадания забортной воды в помещения лодки всегда высока, требуется постоянный контроль за содержанием хлора и вентилирование аккумуляторных ям.

В подводном положении для связывания водорода используются приборы беспламенного (каталитического) дожигания водорода - КПЧ, устанавливаемые в отсеках подводной лодки и печи дожига водорода, встроенные в систему вентиляции аккумуляторной батареи. Полное удаление водорода возможно только вентилированием АБ. Поэтому на ходовой лодке даже в базе несётся вахта в центральном посту и в посту энергетики и живучести (ПЭЖ). Одна из её задач - контроль содержания водорода и вентилирование аккумуляторной батареи.

Топливная система

На дизель-электрических, и в меньшей степени, на атомных ПЛ используется дизельное топливо - соляр. Объём хранимого топлива может составлять до 30 % водоизмещения. Причём это переменный запас, а значит он представляет серьёзную задачу при расчёте дифферентовки.

Соляр достаточно легко отделяется от морской воды отстаиванием, при этом практически не смешивается, поэтому применяют такую схему. Топливные цистерны располагаются в нижней части лёгкого корпуса. По мере расходования топлива оно замещается забортной водой. Поскольку разница плотностей соляра и воды примерно 0,8 к 1.0, соблюдается порядок расходования, например: носовая цистерна левого борта, затем кормовая правого, затем носовая цистерна правого, и так далее, чтобы изменения в дифферентовке были минимальны.

Водоотливная система

Как следует из названия, предназначена для удаления воды из ПЛ. Состоит из насосов (помп), трубопроводов и арматуры. Имеет водоотливные помпы для быстрой откачки больших количеств воды, и осушительные для полного её удаления.

Основу её составляют центробежные помпы, с большой производительностью. Поскольку их подача зависит от противодавления, и значит, падает с глубиной, то имеются и помпы, подача которых от противодавления не зависит - поршневые. Например, на ПЛ пр.633 производительность водоотливных средств на поверхности составляет 250 м³/ч, на рабочей глубине 60 м³/ч.

Противопожарная система

Противопожарная система ПЛ состоит из подсистем четырёх видов. По сути, лодка имеет четыре независимых системы тушения :

  1. Система воздушно-пенного пожаротушения (ВПЛ);
  2. Система водяного пожаротушения;
  3. Огнетушители и противопожарное имущество (асбестовое полотно, брезент и т. п).

При этом, в отличие от стационарных, наземных систем, водяное тушение не является основным. Наоборот, руководство по борьбе за живучесть (РБЖ ПЛ), нацеливает на использование в первую очередь объёмной и воздушно-пенной систем. Причина этому - большая насыщенность ПЛ оборудованием, а значит, высокая вероятность повреждений от воды, коротких замыканий, выделения вредных газов.

Кроме того, имеются системы предотвращения пожаров:

  • система орошения шахт (контейнеров) ракетного оружия - на ракетных ПЛ;
  • система орошения боеприпаса, хранящегося на стеллажах в отсеках ПЛ;
  • система орошения межотсечных переборок;

Cистема объёмного химического пожаротушения (ЛОХ)

Система Лодочная, Объёмная, Химическая (ЛОХ) предназначена для тушения пожаров в отсеках ПЛ (кроме пожаров порохов, взрывчатых веществ и двухкомпонентного ракетного топлива). Основана на прерывании цепной реакции горения при участии кислорода воздуха гасящим агентом на основе фреона. Основное её достоинство - универсальность. Однако запас фреона ограничен, и потому использование ЛОХ рекомендуется только в определённых случаях.

Система воздушно-пенного пожаротушения (ВПЛ)

Система Воздушно-пенная, Лодочная (ВПЛ) предназначена для тушения небольших местных возгораний в отсеках:

  • электрооборудования, находящегося под напряжением;
  • скопившегося в трюме топлива, масла или других легковоспламеняющихся жидкостей;
  • материалов в аккумуляторной яме;
  • ветоши, деревянной обшивки, теплоизоляционных материалов.

Система водяного пожаротушения

Система предназначена для тушения пожара в надстройке ПЛ и ограждении рубки, а также пожаров топлива, пролитого на воде вблизи ПЛ. Иными словами, не предназначена для тушения внутри прочного корпуса ПЛ.

Огнетушители и пожарное имущество

Предназначены для тушения возгораний ветоши, деревянной обшивки, электроизоляционных и теплоизоляционных материалов и обеспечения действий личного состава при тушении пожара. Иначе говоря, играют вспомогательную роль в случаях, когда использование централизованных систем пожаротушения затруднено или невозможно.

  • Все системы и устройства подводной лодки настолько тесно связаны с живучестью и зависят друг от друга, что всякий, кто допускается на борт хотя бы временно, должен сдать зачёт по устройству и правилам безопасности на ПЛ, включая особенности конкретного корабля, на который получает доступ.
  • Википедия - Российская атомная подводная лодка типа «Акула» («Тайфун») Подводная лодка (подлодка, пл, субмарина) корабль, способный погружаться и длительное время действовать в подводном положении. Важнейшее тактическое свойство подводной лодки скрытность … Википедия

    Российская атомная подводная лодка типа «Акула» («Тайфун») Подводная лодка (подлодка, пл, субмарина) корабль, способный погружаться и длительное время действовать в подводном положении. Важнейшее тактическое свойство подводной лодки скрытность … Википедия

    Для этого термина существует аббревиатура «ПЛА», но под этим сокращением могут пониматься другие значения: см. ПЛА (значения). Для этого термина существует аббревиатура «АПЛ», но под этим сокращением могут пониматься другие значения: см. АПЛ… … Википедия

    Схематический разрез двухкорпусной ПЛ 1 прочный корпус, 2 лёгкий корпус (и ЦГБ), 3 прочная рубка, 4 ограждение рубки, 5 надстройка, 6 … Википедия

    Схематический разрез двухкорпусной ПЛ 1 прочный корпус, 2 лёгкий корпус (и ЦГБ), 3 прочная рубка, 4 ограждение рубки, 5 надстройка, 6 верхний стрингер ЛК, 7 киль Назначение системы погружения и всплытия подводной лодки (ПЛ) полностью… … Википедия

В потрясающий музей Мирового океана обязательно надо побывать всем, кто приехал в Калининград, - туда нужно ходить, как в петербуржский Эрмитаж, несколько раз и надолго. В первое посещение удалось посетить только подводную лодку, которая привела меня в полнейший восторг - делюсь с вами увиденным!


В собственности музея 5 судов - перед каждым стоит указатель:

Дизель-электрическая подводная лодка "Б-413". 91 метр в длину, jцените масштабы:

Проход через люк:

Это носовой отсек, в котором расположены атрибуты военной подводной лодки: торпеды, мины, приборы для стрельбы.

По фотографиям, наверное, не очень понятно, но торпеды гигантские:

Интересная технология минирования: нос лодки заострен и похож на крюк, на который прикреплялась мина. Подлодка подплывала к кораблю, цеплялась, оставляла с мину под днищем корабля и незаметно уплывала - через некоторое время происходил взрыв.

Модели устрашающих подводных лодок:

Переходим в жилой отсек через такие люки:

Комнаты командира с пугающим манекеном и его заместителя:

Слева кают-кампания, или штаб для совещаний с раскладным столом. Обратите внимание на лампы сверху - здесь же оперировали раненых и поэтому сделали особенно яркое освещение. Справа малюсенькая каюта офицеров.

После жилого отсека для главных членов экипажа - центральный и самый важный отсек управления лодкой:

Теряем дар речи при виде системы управления:

Таблица сигналов перестукивания и общий вид отсека управления:

Здесь же рубка радистов с впечатляющими приборами передачи информации:

И гальюн:) Если я правильно поняла, у него была обычная дверь, как и должно быть в туалете, а сейчас поставили дверцу с окном, чтобы можно было посмотреть, не трогая дверь.

Рядом люк в отдел с перископами:

Девушкам на заметку: не надевайте юбку или платье, если пойдете этот музей:)

Здесь два перископа разной мощности. В одном из них три светофильтра, которые применяются в зависимости от условий видимости.

Здесь, как и везде, множество приборов, висящих на стенах и потолке - все пространство использовано по максимуму.

Навигационная система для обладателей хорошей памяти:

Кухня! Она очень маленькая, повар, как и все члены экипажа, должен быть невысоким и худеньким:

У этой подлодки три этажа: внизу жилые помещения для членов экипажа. Для справки, в экипаже 80 человек: 13 офицеров, 11 мичманов (следующее звание после офицеров), 16 старшин (после мичманов) и 40 рядовых.

Следующие два отсека - дизельный и электромоторный - обслуживают подлодку. Благодаря им она может плавать, не поднимаясь, до 3 месяцев!

Огромные электромоторы выше человеческого роста:

Последний отсек - кормовой торпедный. Костюм водолаза на случай разведки или аварийной эвакуации. Обратите внимание, что рядом с ним койки - как я уже писала, пространство использовано по максимуму!

Набор моряка:

На воздух! Выход через люк на другом конце лодки.

Это аварийный люк, находящийся над отсеком с перископами:

Вот такая необычная экскурсия - будете в Калининграде, обязательно загляните!

В продолжение публикаций о подводных лодках, стоявших ранее на вооружении ВМФ СССР и России, и переоборудованных в музеи, предлагаем вашему вниманию краткий обзор современных российских подводных лодок. В первой части будут рассмотрены неатомные (дизель-электрические) подводные лодки.

В настоящее время на вооружении Военно-морского флота России стоят дизель-электрические подводные лодки трёх основных проектов: 877 "Палтус", 677 "Лада" и 636 "Варшавянка".

Все современные российские дизель-электрические подводные лодки построены по схеме с полным электродвижением: основным двигателем является электромотор, питаемый от аккумуляторных батарей, перезарядка которых осуществляется в надводном положении или на перископной глубине (при поступлении воздуха через шахту РДП) от дизель-генератора. Дизель-генератор выгодно отличается от дизельных двигателей меньшими габаритами, что достигается за счёт повышения оборотов вращения вала и отсутствии необходимости в реверсе.

Проект 877 "Палтус"

Подводные лодки проекта 877 (шифр "Палтус", по классификации НАТО - Kilo) - серия советских и российских подводных лодок 1982-2000 гг. Проект разработан в ЦКБ "Рубин", генеральный конструктор проекта Ю.Н.Кормилицин. Головной корабль построен в 1979-1982 гг. на заводе им. Ленинского Комсомола в Комсомольске-на-Амуре. Впоследствии корабли проекта 877 строились, на судостроительном заводе "Красное Сормово" в Нижнем Новгороде и ОАО "Адмиралтейские верфи" в Санкт-Петербурге.

Корпус лодки впервые в СССР был выполнен в "дирижабельной" форме с оптимальным с точки зрения обтекаемости соотношением длины к ширине (чуть больше 7:1). Выбранная форма позволила повысить скорость подводного хода и снизить шумность, за счёт ухудшения мореходности в надводном положении. Лодка имеет традиционную для советской школы подводного кораблестроения двухкорпусную конструкцию. Лёгкий корпус ограничивает развитую носовую оконечность, в верхней части которой находятся торпедные аппараты, а нижнюю занимает развитая основная антенна гидроакустического комплекса "Рубикон-М".

Лодки проекта получили автоматизированный комплекс вооружения. В состав вооружения вошли 6 торпедных аппаратов калибра 533 мм, до 18 торпед или 24 мины. В советское время на кораблях устанавливался оборонительный ЗРК "Стрела-3", который мог использоваться в надводном положении.

Подводная лодка Б-227 "Выборг" проекта 877 "Палтус"

Подводная лодка Б-471 "Магнитогорск" проекта 877 "Палтус"

Продольный разрез подводной лодки проекта 877 "Палтус":

1 - основная антенна ГАК "Рубикон-М"; 2 - 533-мм ТА; 3 - первый (носовой или торпедный) отсек; 4 - якорный шпиль; 5 - носовой люк; 6 - запасные торпеды с устройством быстрого заряжания; 7 - носовой горизонтальный руль с механизмом заваливания и приводами; 8 - жилые помещения; 9 - носовая группа АБ; 10 - репитер гирокомпаса; 11 - ходовой мостик; 12 - перископ атаки ПК-8,5; 13 - зенитный и навигационный перископ ПЗНГ-8М; 14 - ПМУ устройства РДП; 15 - прочная рубка; 16 - ПМУ антенны РЛК "Каскад"; 17 - ПМУ антенны радиопеленгатора "Рамка"; 18 - ПМУ антенны СОРС МРП-25; 19 - контейнер (кранец) для хранения ЗР ПЗРК "Стрела-ЗМ"; 20 - второй отсек; 21 - центральный пост; 22 - третий (жилой) отсек; 23 - кормовая группа АБ; 24 - четвертый (дизель-генераторный) отсек; 25 - ДГ; 26 - баллоны системы ВВД; 27 - пятый (электромоторный) отсек; 28 - ГГЭД; 29 - аварийный буй; 30 - шестой (кормовой) отсек; 31 - кормовой люк; 32 - ГЭД экономического хода; 33 - приводы кормовых рулей; 34 - линия вала; 34 - кормовой вертикальный стабилизатор.

Тактико-технические данные проекта 877 "Палтус":

Проект 677 "Лада" ("Амур")

Подводные лодки проекта 677 (шифр "Лада") - серия российских дизель-электрических подводных лодок, разработанных в конце XX века в ЦКБ "Рубин", генеральный конструктор проекта Ю.Н.Кормилицин. Лодки предназначаются для уничтожения субмарин, надводных кораблей и судов противника, защиты военно-морских баз, морского побережья и морских коммуникаций, ведения разведки. Серия является развитием проекта 877 "Палтус". Низкий уровень шумности был достигнут благодаря выбору однокорпусного конструктивного типа, уменьшением габаритов корабля, применению всережимного главного гребного электродвигателя на постоянных магнитах, установкой виброактивного оборудования и внедрению технологии нанесения противогидролокационного покрытия нового поколения. Строятся подводные лодки проекта 677 на ОАО "Адмиралтейские верфи" в Санкт-Петербурге.

Подводная лодка про­ек­та 677 вы­пол­не­на по так на­зы­вае­мой по­лу­то­ра­кор­пус­ной схе­ме. Осе­сим­мет­рич­ный проч­ный кор­пус из­го­тов­лен из ста­ли АБ-2 и прак­ти­че­ски по всей дли­не име­ет оди­на­ко­вый диа­метр. Но­со­вая и кор­мо­вая за­кон­цов­ки име­ют сфе­ри­че­скую фор­му. Пло­ски­ми пе­ре­бор­ка­ми кор­пус раз­де­лен по дли­не на пять во­до­не­про­ни­цае­мых от­се­ков, по­сред­ст­вом плат­форм кор­пус раз­де­лен по вы­со­те на три яру­са. Лег­ко­му кор­пу­су при­да­на об­те­кае­мая фор­ма, обес­пе­чи­ваю­щая вы­со­кие гид­ро­ди­на­ми­че­ские ха­рак­те­ри­сти­ки. Ограждение выдвижных устройств име­ет та­кую же фор­му, как у ло­док про­ек­тов 877, в то же вре­мя кор­мо­вое опе­ре­ние вы­пол­не­но кре­сто­об­раз­ным, а пе­ред­ние го­ри­зон­таль­ные ру­ли раз­ме­ща­ют­ся на ог­ра­ж­де­нии, где они соз­да­ют ми­ни­маль­ные по­ме­хи ра­бо­те гид­ро­аку­сти­че­ско­го ком­плек­са.

По сравнению с "Варшавянкой" надводное водоизмещение снижено почти в 1,3 раза - с 2 300 до 1 765 тонн. Скорость полного подводного хода увеличена с 19-20 до 21 узла. Численность экипажа уменьшена с 52 до 35 подводников, при этом автономность осталась без изменения - до 45 суток. Лодки типа "Лада" отличаются очень низким уровнем шумности, высоким уровнем автоматизации и относительно небольшой ценой по сравнению с зарубежными аналогами: немецким типом 212, и франко-испанским проектом "Scorpene", обладая при этом более мощным вооружением.

Подводная лодка Б-585 "Санкт-Петербург" проекта 677 "Лада"

Продольный разрез подводной лодки проекта 677 "Лада":

1 - выгородка основной антенны ГАК; 2 - носовая ЦГБ; 3 - 533-мм ТА; 4 - торпедопогрузочный люк; 5 - якорь; 6 - носовой (торпедный) отсек; 7 - запасные торпеды с устройством быстрого заряжания; 8 - выгородка вспомогательных механизмов; 9 - носовая АБ; 10 - ходовой мостик; 11 - прочная рубка; 12 - второй (центрального поста) отсек; 13 - центральный пост; 14 - главный командный пост; 15 - агрегатная выгородка РЭВ; 16 выгородка вспомогательного оборудования и общесудовых систем (трюмных насосов, насосов общесудовой системы гидравлики, преобразователи и кондиционеры); 17 - третий (жилой и аккумуляторный) отсек; 18 - кают-компания и камбузный блок; 19 - жилые помещения и медицинский блок; 20 - кормовая АБ; 21 - четвертый (дизель-генераторный) отсек; 22 - ДГ; 23 - выгородка вспомогательных механизмов; 24 - пятый (электромоторный) отсек; 25 - ГЭД; 26 - топливная цистерна; 27 - приводы кормовых рулей; 28 - линия вала; 29 - кормовая ЦГБ; 30 - кормовые вертикальные стабилизаторы; 31 обтекатель канала выхода ГПБА.

Тактико-технические данные проекта 677 "Лада":

*Амур-950" - экспортная модификация проекта 677 "Лада" оснащена четырьмя торпедными аппаратами и УВП на десять ракет, способна произвести залп из десяти ракет за две минуты. Глубина погружения - 250 метров. Экипаж - от18 до 21 человека. Автономность - 30 суток.

Из-за недостатков силовой установки планировавшееся серийное строительство лодок этого проекта в первоначальном виде отменено, проект будет дорабатываться.

Проект 636 "Варшавянка"

Подводные лодки проекта 636 (шифр "Варшавянка", по классификации НАТО – Improved Kilo) многоцелевые дизель-электрические подводные лодки – улучшенный вариант экспортной подводной лодки проекта 877ЭКМ. Проект разработан также в ЦКБ "Рубин", под руководством Ю.Н.Кормилицина.

Подводные лодки типа "Варшавянка", объединяющего проекты 877 и 636 и их модификации, являются основным классом неатомных подводных лодок, производимых в России. Они стоят на вооружении как российского, так и ряда зарубежных флотов. Проект, разработанный в конце 1970-х годов, считается весьма удачным, поэтому строительство серии, с рядом усовершенствований, продолжается и в 2010-х годах.

Подводная лодка Б-262 "Старый Оскол" проекта 636 "Варшавянка"

Тактико-технические данные проекта 636 "Варшавянка":

Продолжение следует.

Подводными лодками называют класс кораблей, которые способны двигаться и выполнять другие действия полностью автономно под водой и на ее поверхности. Такие судна способны нести вооружение, а также могут быть приспособлены для различных специализированных операций. Рассмотрим, как устроена и как она работает.

Исторические факты

Самая первая информация о подобных плавательных средствах датируется 1190 годом. В одном из германских сказаний главный персонаж построил нечто вроде подводной лодки из кожи и сумел скрыться на ней от судов врага на морском дне. Это плавательное средство пробыло на дне 14 дней. Воздух внутрь подавался через трубку, второй конец которой был на поверхности. Каких-либо подробностей, чертежей, информации, как устроена подводная лодка, не сохранилось.

Более-менее реальные основы подводного плавания изложил Уильям Буэн в своем труде в 1578 году. Буэн на базе закона Архимеда впервые научно обосновывает способы всплытия и погружения при помощи изменения характеристик плавучести судна, изменяя его водоизмещение. По этим трудам удалось построить судно, способное погружаться и всплывать. Плыть под водой судно не могло.

Далее, в эпоху научно-технического прогресса, в Санкт-Петербурге тайным образом инженеры заложили принцип устройства подводной лодки, предназначенной для вооруженных сил. Она строилась по проектам Ефима Никонова. Проект осуществлялся с 1718 по 1721 год. Далее прототип спустили на воду, и он смог успешно пройти все испытания.

Через 50 лет в США построили первую подводную лодку, которая использовалась в ведении боевых действий. Корпус имел форму чечевицы из двух половинок, которые соединялись при помощи фланцев и кожаных вставок. На крыше была устроена полусфера из меди с люком. На лодке было балластное отделение, которое опорожнялось и заполнялось при помощи помпы. Имелся и аварийный балласт из свинца.

Первой серийной подводной лодкой стало судно Джевецкого. Серия составляла 50 штук. Затем конструкция была усовершенствована, и вместо весельного привода появился вначале пневматический, а затем и электропривод. Эти конструкции строили с 1882 по 1888 год.

Первой электрической субмариной стало судно разработки Клода Губэ. Прототип спустили на воду в 1888 году, судно имело водоизмещение в размере 31 тонны. Для передвижения использовался электрический двигатель мощностью 50 лошадиных сил. Питание осуществлялось от 9-тонной аккумуляторной батареи.

В 1900 году французские инженеры создали первую лодку с паровым и электрическим двигателем. Первый предназначался для движения над водой, второй - под ней. Конструкция была уникальна. Американское судно по подобию разработки французов работало на бензиновом двигателе для плавания над поверхностью воды.

Устройство подводной лодки

Этому вопросу нужно уделить особое внимание. Давайте рассмотрим, как устроена подводная лодка. Она состоит из нескольких конструктивных элементов, выполняющих самые разные функции. Рассмотрим основные элементы.

Корпус

Главная задача корпуса - это полностью обеспечить постоянную внутреннюю среду для механизмов судна и для его экипажа в процессе погружения. Также корпус должен быть таким, чтобы достигалась максимально возможная скорость движения под водой. Это обеспечивается облегченным корпусом.

Типы корпусов

Подводные лодки, где корпус выполняет две эти задачи, называли однокорпусными. Цистерна главного балласта находилась внутри корпуса, что снижало полезный объем внутри и требовало максимальной прочности стенок. Лодка подобной конструкции выигрывает в весе, в необходимой мощности двигателя и в характеристиках маневренности.

Подводные лодки с полуторным корпусом оснащены прочным корпусом, который частично закрыт более легким. Цистерну главного балласта здесь вынесли наружу. Она находится между двумя корпусами. Среди плюсов - отличная маневренность и быстрая скорость погружения. Минусы - мало места внутри, малое время автономной работы.

Классические двухкорпусные лодки оснащаются прочным корпусом, который на всей своей протяженности закрыт легким корпусом. Главный балласт находится в промежутке между корпусами. Лодка обладает большой надежностью, временем автономной работы, большим внутренним объемом. Среди минусов - длительный процесс погружения, крупные размеры, сложность систем заполнения балластных цистерн.

Современные подходы к строительству подводных лодок диктуют оптимальные формы корпусов. Эволюция формы очень тесно связана с развитием систем двигателей. Изначально в приоритете были лодки для надводного перемещения с возможностью кратковременного погружения для решения боевых задач. Корпус тех субмарин имел классическую форму с заостренной носовой частью. Гидродинамическое сопротивление было очень высоким, но тогда оно не играло особой роли.

Современные лодки имеют значительно большую автономность и скорость хода, поэтому инженерам приходится снижать его - корпус делают в форме капли. Это оптимальная форма для движения под водой.

Моторы и АКБ

В устройстве современной подводной лодки для движения имеются аккумуляторы, электродвигатели и дизельные генераторы. Одного заряда аккумуляторов часто недостаточно. Максимум, на что хватает заряда - до четырех суток. На максимальной скорости АКБ подводной лодки разряжается за несколько часов. Подзарядку осуществляют дизельным генератором. Лодка обязательно должна всплывать, чтобы аккумуляторы зарядились.

Также в устройстве применялись анаэробные или воздухонезависимые двигатели. Им не нужен воздух. Лодка могла не всплывать.

Системы для погружения и всплытия

В устройстве подводной лодки имеются и эти системы. Для погружения подводная лодка, в отличие от надводной, должна иметь отрицательную плавучесть. Этого достигали двумя способами - повышением веса или снижением водоизмещения. Для повышения веса в подводных лодках имеются балластные цистерны, которые заполняются водой либо воздухом.

Для обычного всплытия или погружения лодки применяют кормовые, а также носовые цистерны или цистерны главного балласта. Они нужны для заполнения водой в целях погружения и для заполнения воздухом для всплытия. Когда лодка находится под водой, цистерны заполнены.

Чтобы быстро и точно контролировать глубину, применяют цистерны с контролем глубины. Взгляните на фото устройства подводной лодки. Через изменение объема воды контролируют изменение глубины.

Чтобы управлять направлением лодки, применяются вертикальные рули. На современных машинах рули могут достигать огромных размеров.

Системы наблюдения

Одни из первых субмарин для небольшой глубины управлялись через иллюминаторы. Далее, по мере развития, встал вопрос об уверенной навигации и управлении. Впервые для этого в 1900 году применили перископ. В дальнейшем системы постоянно модернизировались. Сейчас перископы уже никто не использует, а их место заняли гидроакустические активные и пассивные сонары.

Лодка внутри

Внутри подводная лодка представляет собой несколько отсеков. Если рассмотреть, как устроена подводная лодка на примере одного из экспонатов выставки «Из истории подводного флота России», то сразу же в первом отсеке можно видеть шесть носовых торпедных аппаратов, устройство для стрельбы, запасные торпеды.

Во втором отсеке находятся офицерские и командирские каюты, рубка специалиста по гидроакустике и комната радиоразведчика.

Третий отсек представляет собой центральный пост. В данном отсеке масса различных приборов и устройств для управления движением, погружением, всплытием.

Четвертый представляет собой кают-компании для старшин, камбуз, радиорубку. В пятом отсеке находятся три дизельных двигателя мощностью 1900 л. с. каждый. Они работают, когда лодка находится над водой. В следующем отсеке находятся три электрических двигателя для подводного хода.

В седьмом установлены торпедные аппараты, прибор для стрельбы, койки личного состава. Можно посмотреть, как устроена подводная лодка внутри. Фото позволит ознакомиться со всеми приборами и отсеками.

Принципы действия и устройство подводной лодки рассматриваются вместе, так как они тесно связаны. Определяющим является принцип подводного плавания. Отсюда, основные требования к ПЛ это:

  • выдерживать давление воды в подводном положении, то есть обеспечивать прочность и водонепроницаемость корпуса.
  • обеспечивать управляемые погружение, всплытие, и смену глубины.
  • иметь оптимальное с точки зрения ходкости обтекание
  • сохранять работоспособность (боеспособность) во всём диапазоне эксплуатации по физическим, климатическим условиям и условиям автономности.

Прочность и водонепроницаемость

Обеспечение прочности является самой трудной задачей, и потому главное внимание уделяется ей. В случае двухкорпусной конструкции давление воды (избыточные 1 кгс/см² на каждые 10 м глубины) принимает на себя прочный корпус , имеющий оптимальную форму для противостояния давлению. Обтекание обеспечивается лёгким корпусом . В ряде случаев при однокорпусной конструкции прочный корпус имеет форму одновременно удовлетворяющую и условиям противостояния давлению, и условиям обтекаемости. Например, такую форму имел корпус подводной лодки Джевецкого , или британской сверхмалой субмарины X-Craft .

Прочный корпус (ПК)

От того, насколько прочен корпус, какое давление воды он может выдерживать, зависит важнейшая тактическая характеристика ПЛ - глубина погружения. Глубина определяет скрытность и неуязвимость лодки, чем больше глубина погружения, тем сложнее обнаружить лодку и тем сложнее поразить её. Наиболее важны рабочая глубина - максимальная глубина, на которой лодка может находиться неограниченно долго без возникновения остаточных деформаций, и предельная глубина - максимальная глубина, на которую лодка ещё может погружаться без разрушения, пусть и с остаточными деформациями.

Разумеется, прочность должна сопровождаться водонепроницаемостью. Иначе лодка, как и всякий корабль, просто не сможет плавать.

Перед выходом в море или перед походом, в ходе пробного погружения, на ПЛ проверяется прочность и герметичность прочного корпуса. Непосредственно перед погружением из лодки с помощью компрессора (на дизельных ПЛ - главного дизеля) частью откачивается воздух, чтобы создать разрежение. Подается команда «слушать в отсеках». Одновременно следят за отсечным давлением. Если слышен характерный свист воздуха, и/или давление быстро восстанавливается до атмосферного, прочный корпус негерметичен. После погружения в позиционное положение подается команда «осмотреться в отсеках», и корпус и арматура визуально проверяются на течи.

Лёгкий корпус (ЛК)

Обводы лёгкого корпуса обеспечивают оптимальное обтекание на расчётном ходу. В подводном положении внутри лёгкого корпуса находится вода, - внутри и снаружи него давление одинаково и ему нет надобности быть прочным, отсюда его название. В легком корпусе располагают оборудование, не требующее изоляции от забортного давления: балластные и топливные (на дизельных ПЛ) цистерны, антенны ГАС , тяги рулевого устройства.

Типы конструкции корпуса

  • Однокорпусные : цистерны главного балласта (ЦГБ) находятся внутри прочного корпуса. Лёгкий корпус только в оконечностях. Элементы набора, подобно надводному кораблю, находятся внутри прочного корпуса. Достоинства такой конструкции: экономия размеров и веса, соответственно меньшие потребные мощности главных механизмов, лучшая подводная маневренность. Недостатки: уязвимость прочного корпуса, малый запас плавучести, необходимость выполнять ЦГБ прочными. Исторически, первые ПЛ были однокорпусными. Большинство американских АПЛ также однокорпусные.
  • Двухкорпусные (ЦГБ внутри лёгкого корпуса, лёгкий корпус полностью закрывает прочный): у двухкорпусных ПЛ элементы набора обычно находятся снаружи прочного корпуса, чтобы сэкономить место внутри. Достоинства: повышенный запас плавучести, более живучая конструкция. Недостатки: увеличение размеров и веса, усложнение балластных систем, меньшая маневренность, в том числе при погружении и всплытии. По такой схеме построено большинство русских/советских лодок. Для них стандартное требование - обеспечение непотопляемости при затоплении любого отсека и прилегающих к нему ЦГБ.
  • Полуторакорпусные : (ЦГБ внутри лёгкого корпуса, лёгкий корпус частично закрывает прочный). Достоинства полуторакорпусных ПЛ: хорошая маневренность, сокращенное время погружения при достаточно высокой живучести. Недостатки: меньший запас плавучести, необходимость помещать больше систем в прочный корпус. Такой конструкцией отличались средние ПЛ времен Второй мировой войны , например, немецкие типа VII , и первые послевоенные, например, тип «Гуппи», США.

Надстройка

Надстройка формирует дополнительный объём над ЦГБ и/или верхнюю палубу ПЛ, для использования в надводном положении. Выполняется лёгкой, в подводном положении заполняется водой. Может играть роль дополнительной камеры над ЦГБ, страхующей цистерны от аварийного заполнения. В ней же располагают устройства, не требующие водонепроницаемости: швартовное, якорное, аварийные буи. В верхней части цистерн находятся клапаны вентиляции (КВ), под ними - аварийные захлопки (АЗ). Иначе их называют первыми и вторыми запорами ЦГБ.

Прочная рубка

Устанавливается на прочном корпусе сверху. Выполняется водонепроницаемой. Является шлюзом для доступа в ПЛ через главный люк, спасательной камерой, а часто и боевым постом. Имеет верхний и нижний рубочный люк . Через неё же обычно пропущены шахты перископов . Прочная рубка обеспечивает дополнительную непотопляемость в надводном положении - верхний рубочный люк высоко над ватерлинией , опасность заливания ПЛ волной меньше, повреждение прочной рубки не нарушает герметичности прочного корпуса. При действии под перископом рубка позволяет увеличить его вылет - высоту головки над корпусом, - и тем самым увеличить перископную глубину. Тактически это выгоднее - срочное погружение из-под перископа происходит быстрее.

Ограждение рубки

Когда требуется срочное погружение, используют цистерну быстрого погружения (ЦБП, иногда называется цистерной срочного погружения). Её объём не входит в расчётный запас плавучести, то есть приняв в неё балласт, лодка становится тяжелее окружающей воды, что помогает «провалиться» на глубину. После этого, разумеется, цистерна быстрого погружения немедленно продувается. Она находится в прочном корпусе и выполняется прочной.

В боевой обстановке (в том числе на боевой службе и в походе) немедленно после всплытия лодка принимает воду в ЦБП, и компенсирует её вес, поддувая главный балласт - сохраняя некоторое избыточное давление в ЦГБ. Таким образом, лодка находится в немедленной готовности к срочному погружению.

Среди важнейших специальных цистерн - следующие.

Торпедо- и ракетозаместительные цистерны

Чтобы сохранить общую нагрузку после выхода торпед или ракет из ТА / шахт, и предотвратить самопроизвольное всплытие, поступившую в них воду (около тонны на каждую торпеду, десятки тонн на ракету) не откачивают за борт, а сливают в специально предназначенные цистерны. Это позволяет не нарушать работы с ЦГБ и ограничить объём уравнительной цистерны.

Если попытаться компенсировать вес торпед и ракет за счёт главного балласта, тот должен быть переменным, то есть в ЦГБ должен оставаться пузырь воздуха, а он «гуляет» (подвижен) - наихудшая для дифферентовки ситуация. Погруженная ПЛ при этом практически теряет управляемость , по выражению одного автора, «ведет себя как взбесившаяся лошадь». В меньшей степени это справедливо и для уравнительной цистерны. Но главное, если ею компенсировать большие грузы, придется увеличить её объём, а значит, количество сжатого воздуха, необходимого для продувания. А запас сжатого воздуха на лодке - самое ценное, его всегда мало и он трудно восполним.

Цистерны кольцевого зазора

Между торпедой (ракетой) и стенкой торпедного аппарата (шахты) всегда имеется зазор, особенно в головной и хвостовой частях. Перед выстрелом наружную крышку торпедного аппарата (шахты) нужно открыть. Сделать это можно, только сравняв давление за бортом и внутри, то есть заполнив ТА (шахту) водой, сообщающейся с забортной. Но если впустить воду непосредственно из-за борта, дифферентовка будет сбита - прямо перед выстрелом.

Чтобы этого избежать, воду, необходимую для заполнения зазора, хранят в специальных цистернах кольцевого зазора (ЦКЗ). Они находятся вблизи ТА или шахт, и заполняются из уравнительной цистерны. После этого для выравнивания давления достаточно перепустить воду из ЦКЗ в ТА и открыть забортный клапан.

Энергетика и живучесть

Заполнение и продувка цистерн, выстрел торпед или ракет, движение и вентиляция требуют затрат энергии.

Соответственно, без энергии лодка не может не только двигаться, но сколько-нибудь долго сохранять способность «плавать и стрелять». То есть, энергетика и живучесть - две стороны одного процесса.

Если с движением можно подобрать традиционные для корабля решения - использовать энергию сжигаемого топлива (если для этого достаточно кислорода), или энергию расщепления атома, то для действий, свойственных только подводной лодке, нужны другие источники энергии. Даже ядерный реактор, дающий практически неограниченный её источник, имеет недостаток - он вырабатывает её только в определённом темпе, и очень неохотно темп меняет. Попытаться получить с него больше мощности значит рисковать, что реакция выйдет из-под контроля - этакий ядерный мини-взрыв.

Значит, нужен какой-то способ запасать энергию, и быстро высвобождать по мере надобности. И сжатый воздух с зарождения подводного плавания остаётся самым лучшим способом. Единственный серьёзный недостаток его в ограниченности запасов. Баллоны для хранения воздуха имеют немалый вес, и тем больше, чем больше давление в них. Это и ставит предел запасам.

Воздушная система

Сжатый воздух является вторым по значению источником энергии на лодке и, во вторую очередь, даёт запас кислорода. С его помощью производится множество эволюций - от погружения и всплытия до удаления из лодки отходов.

Например, бороться с аварийным затоплением отсеков можно подачей в них сжатого воздуха. Торпеды и ракеты выстреливаются тоже воздухом - по сути, продуванием ТА или шахт.

Воздушная система подразделяется на систему воздуха высокого давления (ВВД) давлением 200-400 кг/см 2 (в зависимости от типа ПЛ), воздуха среднего давления (ВСД) давлением 6-30 кг/см 2 и воздуха низкого давления (ВНД).

Система ВВД является среди них главной. Хранить сжатый воздух выгоднее под высоким давлением - занимает меньше места и аккумулирует больше энергии. Поэтому его хранят в баллонах ВВД, а в другие подсистемы отпускают через редукторы давления.

Пополнение запасов ВВД - долгая и энергоёмкая операция. И конечно, она требует доступа к атмосферному воздуху. Учитывая, что современные лодки большую часть времени проводят под водой, и на перископной глубине стараются тоже не задерживаться, возможностей для пополнения не так много. Сжатый воздух приходится буквально рационировать, и обычно следит за этим лично старший механик (командир БЧ-5). Избытки углекислого газа, выделяемого при дыхании, удаляются из воздуха в установках химической регенерации воздуха (скрубберах), включенных в систему вентиляции и рециркуляции воздуха.

На атомных подводных лодках используются установки автономной генерации кислорода для дыхания, с помощью электролиза забортной морской воды . Эта система позволяет атомным подводным лодкам длительное время (неделями) не всплывать на поверхность для пополнения запаса воздуха.

На некоторых современных неатомных подводных лодках Швеции и Японии применяется воздухонезависимый двигатель Стирлинга , работающий на жидком кислороде, который в дальнейшем используется для дыхания. Подводные лодки, оснащенные данной системой, могут до 20 дней непрерывно находиться под водой.

Движение

Движение, или ход ПЛ - главный потребитель энергии. В зависимости от того, как обеспечивается надводный и подводный ход, все ПЛ можно разделить на два больших типа: с раздельным или с единым двигателем .

Раздельным называется двигатель, который используется только для надводного или только для подводного хода. Единым , соответственно, называется двигатель, который годится для обоих режимов.

Исторически первым двигателем ПЛ был человек. Своей мускульной силой он приводил лодку в движение как на поверхности, так и под водой, то есть был единым двигателем.

Поиск более мощных и дальноходных двигателей был прямо связан с развитием техники вообще. Он прошёл через паровую машину и различные типы двигателей внутреннего сгорания к дизелю . Но все они имеют общий недостаток - зависимость от атмосферного воздуха. Неизбежно возникает раздельность , то есть нужда во втором двигателе, для подводного хода. Дополнительное требование к двигателям подводных лодок - низкий уровень производимого шума. Бесшумность подлодки в режиме подкрадывания необходима для сохранения её незаметности от противника при выполнении боевых задач в непосредственной близости от него.

Традиционно двигателем подводного хода был и остаётся электромотор , питающийся от аккумуляторной батареи. Он воздухонезависим, достаточно безопасен и приемлем по весу и габаритам. Однако и тут есть серьёзный недостаток - малая ёмкость батареи. Поэтому запас непрерывного подводного хода ограничен. Мало того, он зависит от режима использования. Типичной дизель-электрической ПЛ требуется подзаряжать батарею после каждые 300-350 миль экономического хода или каждые 20-30 миль полного хода. Иными словами, лодка может пройти без подзарядки 3 и более суток со скоростью в 2-4 узла либо час-полтора со скоростью более 20 узлов. Поскольку вес и объём дизельной ПЛ ограничены, дизель и электромотор выступают в нескольких ролях. Дизель может быть двигателем или поршневым компрессором , если его вращает электромотор. Тот, в свою очередь, может быть электрическим генератором , когда его вращает дизель, или двигателем, когда работает на винт.

Основной проблемой хранения и передачи электроэнергии является сопротивление элементов ЭЭС. В отличие от наземных агрегатов, сопротивление в условиях высокой влажности и насыщенности оборудованием ПЛ - величина сильно переменная. Одной из постоянных задач команды электриков является контроль изоляции и восстановление её сопротивления до штатного.

Второй серьёзной проблемой является состояние аккумуляторных батарей. В результате химической реакции в них генерируется тепло и выделяется водород . Если свободный водород накопится в определённой концентрации (около 4 %), он образует с кислородом воздуха гремучую смесь , способную взрываться не хуже глубинной бомбы. Перегретая же батарея в тесном трюме служит причиной весьма характерного для лодок ЧП - пожара в аккумуляторной яме.

При попадании в батарею морской воды выделяется хлор , образующий крайне ядовитые и взрывоопасные соединения. Смесь водорода с хлором взрывается даже от света. Учитывая, что вероятность попадания забортной воды в помещения лодки всегда высока, требуется постоянный контроль за содержанием хлора и вентилирование аккумуляторных ям.

В подводном положении для связывания водорода используются приборы беспламенного (каталитического) дожигания водорода - КПЧ, устанавливаемые в отсеках подводной лодки и печи дожига водорода, встроенные в систему вентиляции аккумуляторной батареи. Полное удаление водорода возможно только вентилированием АБ. Поэтому на ходовой лодке даже в базе несётся вахта в центральном посту и в посту энергетики и живучести (ПЭЖ). Одна из её задач - контроль содержания водорода и вентилирование аккумуляторной батареи.

Топливная система

На дизель-электрических, и в меньшей степени, на атомных ПЛ используется дизельное топливо - соляр. Объём хранимого топлива может составлять до 30 % водоизмещения. Причём это переменный запас, а значит он представляет серьёзную задачу при расчёте дифферентовки.

Соляр достаточно легко отделяется от морской воды отстаиванием, при этом практически не смешивается, поэтому применяют такую схему. Топливные цистерны располагаются в нижней части лёгкого корпуса. По мере расходования топлива оно замещается забортной водой. Поскольку разница плотностей соляра и воды примерно 0,8 к 1,0, соблюдается порядок расходования, например: носовая цистерна левого борта, затем кормовая правого, затем носовая цистерна правого, и так далее, чтобы изменения в дифферентовке были минимальны.

На некоторых неатомных подводных лодках 5-го поколения в качестве привода установлен воздухонезависимый двигатель Стирлинга , работающий на жидком кислороде, который в дальнейшем используется для дыхания. Система позволяет достичь высокой скрытности, лодка до 20 суток может не подниматься на поверхность.

Водоотливная система

Как следует из названия, предназначена для удаления воды из ПЛ. Состоит из насосов (помп), трубопроводов и арматуры. Имеет водоотливные помпы для быстрой откачки больших количеств воды, и осушительные для полного её удаления.

Основу её составляют центробежные помпы, с большой производительностью. Поскольку их подача зависит от противодавления, и значит, падает с глубиной, то имеются и помпы, подача которых от противодавления не зависит - поршневые. Например, на ПЛ проекта 633 производительность водоотливных средств на поверхности составляет 250 м³/ч, на рабочей глубине 60 м³/ч.

Противопожарная система

Противопожарная система ПЛ состоит из подсистем четырёх видов. По сути лодка имеет четыре независимых системы тушения:

  1. Система объёмного химического пожаротушения (СХП);
  2. Система воздушно-пенного пожаротушения (ВПЛ);
  3. Система водяного пожаротушения;
  4. Огнетушители и противопожарное имущество (асбестовое полотно, брезент и т. п).

При этом, в отличие от стационарных, наземных систем, водяное тушение не является основным. Наоборот, руководство по борьбе за живучесть (РБЖ ПЛ), нацеливает на использование в первую очередь объёмной и воздушно-пенной систем. Причина этому - большая насыщенность ПЛ оборудованием, а значит, высокая вероятность повреждений от воды, коротких замыканий, выделения вредных газов.

Кроме того, имеются системы предотвращения пожаров:

  • система орошения шахт (контейнеров) ракетного оружия - на ракетных ПЛ;
  • система орошения боеприпаса, хранящегося на стеллажах в отсеках ПЛ;
  • система орошения межотсечных переборок;

Система объёмного химического пожаротушения (ЛОХ)

Лодочная объёмная химическая (ЛОХ) система предназначена для тушения пожаров в отсеках ПЛ (кроме пожаров порохов, взрывчатых веществ и двухкомпонентного ракетного топлива). Основана на прерывании цепной реакции горения при участии кислорода воздуха гасящим агентом на основе фреона. Основное её достоинство - универсальность. Однако запас фреона ограничен, и потому использование ЛОХ рекомендуется только в определённых случаях.

Система воздушно-пенного пожаротушения (ВПЛ)

Воздушно-пенная лодочная (ВПЛ) система предназначена для тушения небольших местных возгораний в отсеках:

  • электрооборудования, находящегося под напряжением;
  • скопившегося в трюме топлива, масла или других легковоспламеняющихся жидкостей;
  • материалов в аккумуляторной яме;
  • ветоши, деревянной обшивки, теплоизоляционных материалов.

Система водяного пожаротушения

Система предназначена для тушения пожара в надстройке ПЛ и ограждении рубки, а также пожаров топлива, пролитого на воде вблизи ПЛ. Иными словами, не предназначена для тушения внутри прочного корпуса ПЛ.

Огнетушители и пожарное имущество

Предназначены для тушения возгораний ветоши, деревянной обшивки, электроизоляционных и теплоизоляционных материалов и обеспечения действий личного состава при тушении пожара. Иначе говоря, играют вспомогательную роль в случаях, когда использование централизованных систем пожаротушения затруднено или невозможно.

У меня на «Малютке» служил старшина торпедистов, весом более 120 кг. Однажды, когда воды в дифферентных цистернах не хватило, я производил дифферентовку, командуя: «Товарищ мичман, пройдите, пожалуйста, в первый отсек и сидите там».

  • Корабельный устав ВМФ. Глава 1. Основы организация корабля. ст. 22, 28-32. Боевые расписания, боевые инструкции
  • Инфантьев В. Н. По местам стоять, к погружению! Научно-художественная книга. - Л., 1977.
  • Именно так обстояло дело на самых первых подводных лодках, что для многих из них оказалось фатальным - при малейшей неравномерности заполнения ЦГБ при погружении ПЛ теряли продольную остойчивость и проваливались на глубину носом или кормой вперёд; то же самое происходило и на ходу в подводном положении из-за свободного перетекания воды в частично заполненных ЦГБ, что вынуждало постоянно действовать горизонтальным и рулями, в результате чего лодка двигалась по своеобразной «синусоиде». Только на рубеже XIX и XX веков американским конструктором ирландского происхождения Холландом были применены расположенные по бокам от прочного корпуса U-образные ЦГБ, при погружении в позиционное положение заполняющиеся водой до верха, без остаточного «пузыря» воздуха, что лишало воду в них способности свободно переливаться и тем самым нарушать дифферентовку. Это в решающей степени позволило решить проблемы с продольной центровкой ПЛ и способностью держать заданную глубину, тем самым перейти от отдельных опытов к строительству настоящих боевых подводных кораблей.

    Литература