Принцип работы атомной электростанции схема. Как работает АЭС? Как работает реактор

Многие ли из вас видели атомную электростанцию хотя бы издалека? С учетом того, что в России действующих АЭС всего десять и охраняются они будь здоров, думаю, ответ в большинстве случаев отрицательный. Впрочем, в ЖЖ народ, как известно, бывалый. Окей, а многие ли тогда видели АЭС изнутри? Ну, например, щупали собственной рукой корпус ядерного реактора? Никто. Я угадал?

Ну что же, сегодня у всех подписчиков этого фотоблога есть возможность увидеть все эти высокие технологии максимально близко. Понимаю, в живую это интереснее в разы, но давайте начинать с малого. В будущем, возможно, я смогу несколько человек взять с собой, а пока изучаем матчасть!


02 . Итак, мы в сорока пяти километрах от неподалёку от строительной площадки 4 очереди Нововоронежской АЭС. Неподалёку от действующей АЭС (первый энергоблок был запущен ещё в шестидесятых годах прошлого века) ведётся сооружение двух современных энергоблоков общей мощностью 2400 МВт. Строительство ведётся по новому проекту "АЭС-2006", который предусматривает использование реакторов ВВЭР-1200. Но о самих реакторах чуть позже.

03 . Именно тот факт, что строительство еще не завершено, и дает нам редкий шанс увидеть всё своими глазами. Даже реакторный зал, которой в будущем будет герметично закрыт и открываться для обслуживания только один раз в год.

04 . Как видно на предыдущем фото, купол наружной защитной оболочки седьмого энергоблока еще на стадии бетонирования, а вот здание реактора энергоблока №6 выглядит уже интереснее (смотрим фото ниже). В общей сложности на бетонирование этого купола потребовалось более 2000 кубометров бетона. Диаметр купола в основании составляет 44 м, толщина – 1,2 м. Обратите внимание на зеленые трубы и объемный металлический цилиндр (вес – 180 т, диаметр – около 25 м, высота – 13 м) – это элементы системы пассивного отвода тепла (СПОТ). На российской АЭС они монтируются впервые. В случае полного обесточивания всех систем АЭС (как это случилось на "Фукусиме"), СПОТ способна обеспечить длительный отвод тепла от активной зоны реактора.

05 . Безусловно самым масштабным элементом АЭС являются башенные градирни. Кроме того, это одно из наиболее эффективных устройств для охлаждения воды в системах оборотного водоснабжения. Высокая башня создает ту самую тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Благодаря высокой башне одна часть испарений возвращается в цикл, а другая уносится ветром.

06 . Высота оболочки башенной градирни энергоблока №6 – 171 метр. Это около 60 этажей. Сейчас это сооружение является самым высоким среди аналогичных, когда либо возводимых в России. Её предшественники не превышали 150 м высоты (на Калининской АЭС). На возведение конструкции ушло более 10 тысяч кубометров бетона.

07 . В основании градирни (диаметр составляет 134 м) расположена так называемыя чаша бассейна. Его верхняя часть "вымощена" оросительными блоками. Ороситель – это основной конструктивный элемент градирни такого типа, предназначенный для того, чтобы раздробить стекающий по нему поток воды и обеспечить ему длительное время и максимальную площадь контакта с охлаждающим воздухом. По сути своей, это решётчатые модули из современных полимерных материалов.

08 . Естественно, мне захотелось сделать эпичный кадр верх, но уже смонтированный ороситель помешал мне это сделать. Поэтому перемещаемся в градирню энергоблока №7. Увы, ночью был морозец и с поездкой на лифте на самый верх мы обломались. Он замёрз.

09 . Ладно, может еще довёдется как-нибудь прокатиться на такую верхотуру, а пока кадр монтируемой системы орошения.

10 . Подумал тут... А может нас просто не пустили на верх из соображений безопасности?

11 . Вся территория стройплощадки пестрит предупреждающими, запрещающими и просто агитационными плакатами и табличками.

12 . Ладно. Телепортируемся в здание центрального щита управления (ЦЩУ).
Ну, естественно, в наше время всё управление ведётся с помощью компьютеров.

13 . Огромная комната, залитая светом, буквально напичкана стройными рядами шкафов с автоматическими системами релейной защиты.

14 . Релейная защита осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и/или ненормальных режимов. При возникновении повреждений система защиты должна выявить конкретный повреждённый участок и отключить его, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания или замыкания на землю).

15 . Вдоль каждой стены расставлены огнетушители. Автоматические, конечно.

16 . Далее перемещаемся в здание комплектного распределительного устройства на 220 кВ (КРУЭ-220). Одно из самых фотогеничных мест на всей АЭС, на мой взгляд. Есть еще КРУЭ-500, но его нам не показали. КРУЭ-220 входит в состав общестанционного электротехнического оборудования и предназначено для приема мощности с внешних линий электропередачи и распределения его на площадке строящейся станции. То есть пока энергоблоки строятся, с помощью КРУЭ-220 электроэнергией обеспечиваются непосредственно строящиеся объекты.

17 . В проекте "АЭС-2006", по которому сооружаются шестой и седьмой энергоблоки, в схеме выдачи мощности на распределительных подстанциях впервые применены комплектные распредустройства 220/500кВ закрытого типа с элегазовой изоляцией. По сравнению с открытыми распредустройствами, которые до сих пор применялись в атомной энергетике, площадь закрытого - в несколько раз меньше. Для понимания масштаба здания, рекомендую вернуться к титульному фото.

18 . Естественно, после ввода новых энергоблоков в эксплуатацию оборудование КРУЭ-220 будет задействовано для передачи в Единую энергосистему электроэнергии, произведенной на Нововоронежской АЭС. Обратите внимание на ящики возле опор ЛЭП. Большинство электрооборудования, применяемого в строительстве, произведено компанией Siemens.

19 . Но не только. Вот, к примеру, автотрансформатор Hyundai.
Вес этого агрегата 350 тонн, а предназначен он для преобразования электроэнергии с 500 кВ до 220 кВ.

20 . Есть (что приятно) и наши решения. Вот, например, повышающий транформатор производства ОАО "Электрозавод". Созданный в 1928 году первый отечественный трансформаторный завод сыграл колоссальную роль в индустриализации страны и в развитии отечественной энергетики. Оборудование с маркой "Электрозавод" работает более чем в 60 странах мира.

21 . На всякий случай, поясню немного по трансформаторам. В общем, схема выдачи мощности (после завершения строительства и запуска в эсплуатацию, естественно) предусматривает производство электроэнергии напряжением двух классов – 220 кВ и 500 кВ. При этом, турбина (о ней позже), вырабатывает всего 24 кВ, которые по токопроводу поступают на блочный трансформатор, где и повышаются уже до 500 кВ. После чего часть энергомощности через КРУЭ-500 передается в Единую энергосистему. Другая часть – на автотрансформаторы (те самые "хюндаи"), где понижается с 500 кВ до 220 кВ и через КРУЭ-220 (смотрим выше) также поступает в энергосистему. Дык вот в качестве упомянутого блочного трансформатора используется три однофазных повышающих "электрозаводских" трансформатора (мощность каждого – 533 МВт, вес – 340 тонн).

22 . Если понятно, переходим к паротурбинной установке энергоблока №6. Вы уж простите, повествование моё идёт как бы от конца к началу (если исходить из процесса производства электроэнергии), но примерно в такой последовательности мы и гуляли по стройплощадке. Так что прошу пардона.

23 . Итак, турбина и генератор спрятаны под кожухом. Поэтому поясняю. Собственно, турбина – это агрегат, в котором тепловая энергия пара (температурой около 300 градусов и давлением 6,8 МПа) преобразуется в механическую энергию вращения ротора, и уже на генераторе – в нужную нам электрическую энергию. Вес машины в собранном состоянии – более 2600 тонн, длина – 52 метра, состоит она из более чем 500 комплектующих. Для транспортировки данного оборудования на строительную площадку было задействовано порядка 200 грузовых машин. Данная турбина К-1200–7-3000 была изготовлена на Ленинградском металлическом заводе и это первая в России быстроходная (3000 оборотов в минуту) турбина мощностью 1200 МВт. Данная инновационная разработка создана специально для атомных энергоблоков нового поколения, которые сооружаются по проекту "АЭС-2006". На фото общий вид турбинного цеха. Или машзала, если хотите. Турбину олдскульные атомщики называют машиной.

24 . Этажом ниже расположены конденсаторы турбины. Конденсаторная группа относится к основному технологическому оборудованию машинного зала и, как все уже догадались, предназначена для превращения в жидкость отработанного в турбине пара. Образовавшийся конденсат после необходимой регенерации вновь возвращается в парогенератор. Вес оборудования конденсационной установки, куда входят 4 конденсатора и система трубопроводов, составляет более 2000 тонн. Внутри конденсаторов располагается порядка 80 тысяч титановых трубок, которые образуют теплопередающую поверхность общей площадью 100 тысяч квадратных метров.

25 . Разобрались? Вот вам здание машзала практически в разрезе и идем дальше. На самом верху мостовой кран.

26 . Перемещаемся в блочный пульт управления энергоблоком №6.
Предназначение, думаю, понятно без пояснений. Выражаясь фигурально, это мозг атомной электростанции.

27 . Элементы БПУ.

28 . Ну и наконец-то, мы отправляемся посмотреть помещения реакторного отделения! Собственно, это место, где расположен ядерный реактор, первый контур и их вспомогательное оборудование. Естественно, в обозримом будущем оно станет герметичным и недоступным.

29 . И самым естественным образом, при попадании внутрь, первым делом задираешь голову и поражаешься размерам купола гермооболочки. Ну и полярным краном заодно. Мостовой кран кругового действия (полярный кран) грузоподъемностью 360 тонн предназначен для монтажа крупногабаритного и тяжеловесного оборудования гермозоны (корпуса реактора, парогенераторов, компенсатора давления и др.). После ввода атомной станции в эксплуатацию кран будет испольоваться при проведении ремонтных работ и транспортировке ядерного топлива.

30 . Далее, конечно, я устремляюсь к реактору и зачарованно наблюдаю его верхнюю часть, еще не подозревая, что ситуация обстоит аналогичная с айсбергами. Так вот ты какой, северный олень. Выражаясь фигурально, это сердце атомной электростанции.

31 . Фланец корпуса реактора. Позже на него убудет установлен верхний блок с приводами СУЗ (система управления и защиты реактора), обеспечивающий уплотнение главного разъема.

32 . Неподалёку наблюдаем бассейн выдержки. Его внутренняя поверхность представляет собой сварную конструкцию из листовой нержавеющей стали. Он предназначен для временного хранения отработавшего ядерного топлива, выгружаемого из реактора. После снижения остаточного тепловыделения использованное топливо вывозится из бассейна выдержки на предприятие атомной отрасли, занимающейся переработкой и регенерацией топлива (хранением, захоронением или переработкой).

33 . А это вдоль стеночки стоят гидроёмкости системы пассивного залива активной зоны. Они относятся к пассивным системам безопасности, то есть функционирует без привлечения персонала и использования внешних источников энергоснабжения. Упрощая, это гигантские бочки, заполненные водным раствором борной кислоты. В случае возникновения чрезвычайной ситуации, когда давление в первом контуре падает ниже определенного уровня, происходит подача жидкости в реактор и охлаждение активной зоны. Таким образом ядерная реакция гасится большим количеством борсодержащей воды, поглощающей нейтроны. Стоит отметить, что в проекте "АЭС-2006", по которому сооружается четвертая очередь Нововоронежской АЭС, впервые предусмотрена дополнительная, вторая, ступень защиты – гидроемкости пассивного залива активной зоны (8 из 12 емкостей), каждая - объемом 120 кубометров.

34 . При проведении будущих планово-предупредительных ремонтов и замены ядерного топлива попасть внутрь реакторного отделения можно будет через транспортный шлюз. Он представляет собой 14-ти метровую цилиндрическую камеру диаметром свыше 9 метров, герметично запираемую с двух сторон полотнами ворот, которые открываются поочередно. Общий вес шлюза составляет порядка 230 тонн.

35 . С наружней стороны шлюза открывается обзорный вид на всю стройплощадку в целом и энергоблок №7 в частности.

36 . Ну, а мы глотнув свежего воздуха, спускаемся ниже, чтобы увидеть, собственно, цилиндрический корпус реактора. Но покуда нам попадаются только технологические трубопроводы. Большая зелёная труба - это один из контуров, так что мы уже совсем близко.

37 . А вот и он. Водо-водяной корпусной энергетический ядерный реактор с водой под давлением модели ВВЭР-1200. Не буду углубляться в дебри деления ядра и цепной ядерной реакции (поди уже и так читаете по диагонали), добавлю только, что внутри реактора расположено множество тепловыделяющих элементов (т.н. твэлы) в виде набора герметичных трубок из специальных сплавов диаметром 9,1–13,5 мм и длиной несколько метров, заполненных таблетками ядерного топлива, а так же управляющие стержни, которые дистанционно с пульта управления можно перемещать по всей высоте активной зоны. Эти стержни изготавливаются из веществ, поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Таким способом регулируется мощность реактора. Теперь понятно для чего в верхней части реактора столько отверстий?

38 . Да, чуть не забыл про главный циркуляционный насос (ГЦН). Он тоже относится к основному технологическому оборудованию здания реактора и предназначен для создания циркуляции теплоносителя в первом контуре. В течение часа агрегат перекачивает более 25 тысяч кубометров воды. Также ГЦН обеспечивает охлаждение активной зоны во всех режимах работы реакторной установки. В состав установки входит четыре ГЦН.

39 . Ну и для закрепления пройденного материала, смотрим на самую простую схему работы АЭС. Всё же просто, разве нет? В особо запущенных случаях перечитываем пост еще раз, хе-хе))

40 . Вот в целом как-то так. Но для тех, кому тема близка, подкину еще несколько карточек с людьми. Согласитесь, в репортаже их не так и много, а между тем, с 2006 года здесь потрудились многие тысячи специалистов различного профиля.

41 . Кто-то внизу...

42 . А кто-то вверху... Хоть вы их и не видите, но они есть.

43 . А это один из самых заслуженных строителей Нововоронежской АЭС – гусеничный самоходный кран DEMAG. Именно он поднимал и устанавливал эти многотонные элементы реакторного и машинного залов (грузоподъемность – 1250 тонн). Дядька-монтажник и грузовик для понимания масштаба, а во весь рост (115 метров) смотрите красавца на фото 03 и 04.

И в качестве заключения. С марта этого года, по неведомым мне причинам, действующую Нововоронежскую АЭС и строящуюся Нововоронежскую АЭС-2 объединили. То, что мы с вами посетили и то, что привыкли называть НВАЭС-2, теперь называется четвертой очередью НВАЭС, а строящиеся энергоблоки из первого и второго превратились, соответственно, в шестой и седьмой. Инфа 110%. Желающие могут сразу же отправиться переписывать статьи в википедии, а я благодарю сотрудников отдела по связям со строящимися энергоблоками НВАЭС и особенно Татьяну, без которой бы эта экскурсия, скорее всего, не состоялась. Так же мои благодарности за ликбез по устройству атомных станций начальнику смены Роману Владимировичу Гридневу, а так же Владимиру


Атомная электростанция и ее устройство:

Атомная электростанция (АЭС) – это ядерная установка, назначением которой является выработка электрической энергии.

– машина для выполнения перегрузок топлива (перегрузочная машина).

Работа этого оборудования контролируется персоналом – операторами, использующими в этих целях блочный щит управления.

Ключевой элемент реактора – зона, располагающаяся в бетонной шахте. В нем также предусмотрена система, обеспечивающая управление и защитные функции; с ее помощью можно выбирать режим, в котором должна проходить управляемая цепная реакция деления. Система обеспечивает и аварийную защиту, что позволяет оперативно прекратить реакцию в случае возникновения внештатной ситуации.

Во втором здании АЭС находится турбинный зал, в котором располагаются турбина и парогенераторы. Кроме того, имеется корпус, в котором перегружается ядерное топливо и хранится отработанное ядерное топливо в специально предусмотренных бассейнах.

На территории атомной станции располагаются конденсаторы , а также градирни, охладительный пруд и брызгальный бассейн, представляющие собой компоненты оборотной системы охлаждения. Градирнями называются башни, выполненные из бетона и по форме напоминающие усеченный конус; в качестве пруда может служить естественный или искусственный водоем. АЭС оборудована высоковольтными линиями электропередач, простирающимися за границы ее территории.

Строительство первой в мире атомной электростанции было начато в 1950 году в России и завершено четыре года спустя. Для осуществления проекта была выбрана территория неподалеку от пос. Обнинского (Калужская область).

Однако впервые вырабатывать электроэнергию начали в Соединенных Штатах Америки в 1951 году; первый успешный случай ее получения был зафиксирован в штате Айдахо.

В сфере производства электроэнергии лидируют США, где ежегодно вырабатывается более 788 млрд кВт/ч. В список лидеров по объемам выработки также входят Франция, Япония, Германия и Россия.


Принцип работы атомной электростанции:

Выработка энергии происходит при помощи реактора , в котором происходит процесс деления ядер. При этом осуществляется распад тяжелого ядра на два осколка, которые, находясь в очень возбужденном состоянии, излучают нейтроны (и др. частицы). Нейтроны, в свою очередь, вызывают новые процессы деления, в результате которых излучается еще большее количество нейтронов. Этот непрерывный процесс распада носит название цепной ядерной реакции, характерной особенностью которой является выделение большого количества энергии. Производство этой энергии и является целью работы атомной электростанции (АЭС).

Производственный процесс включает в себя следующие этапы:

  1. 1. преобразование ядерной энергии в тепловую;
  2. 2. превращение тепловой энергии в механическую;
  3. 3. преобразование механической энергии в электрическую.

На первом этапе в реактор выполняется загрузка ядерного топлива (уран-235) для запуска контролируемой цепной реакции. Топливо высвобождает тепловые или медленные нейтроны, что приводит к выделению значительного количества тепла. Для отведения тепла из активной зоны реактора используется теплоноситель, который пропускается через весь объем активной зоны. Он может иметь жидкую или газообразную форму. Образующаяся тепловая энергия служит в дальнейшем для генерации пара в парогенераторе (теплообменнике).

На втором этапе осуществляется подача пара в турбогенератор. Здесь происходит преобразование тепловой энергии пара в механическую – энергию вращения турбины.

На третьем этапе, с помощью генератора происходит преобразование механической энергии вращения турбины в электрическую, которая далее направляется к потребителям.

Классификация атомных электростанций:

Атомные электростанции классифицируются по типу действующих в них реакторов. Выделяются два основных вида АЭС:

– с реакторами, применяющими в работе тепловые нейтроны (водо-водяной ядерный реактор, кипящий водо-водяной реактор, тяжеловодный ядерный реактор, графито-газовый ядерный реактор, графито-водный ядерный реактор и пр. реакторы на тепловых нейтронах);

– с реакторами, использующими быстрые нейтроны (реакторы на быстрых нейтронах).

В соответствии с видом вырабатываемой энергии различают два вида атомных электростанций :

АЭС для производства электроэнергии;

– АТЭЦ – атомные теплоэлектроцентрали, назначением которых является выработка не только электрической, но и тепловой энергии .

Одно-, двух- и трехконтурные реакторы атомной электростанции:

Реактор атомной станции бывает одно-, двух- или трехконтурным, что имеет отражается на схеме работы теплоносителя – она может иметь, соответственно, один, два или три контура. В нашей стране наиболее распространенными являются станции, оснащенные двухконтурными водо-водяными энергетическими реакторами (ВВЭР). По данным Росстата, на сегодняшний день в России работает 4 АЭС с 1-контурными реакторами, 5 – с 2-контурными и одна – с 3-контурным реактором.

Атомные электростанции с одноконтурным реактором:

Атомные электростанции этого типа – с одноконтурным реактором оснащены реакторами типа РБМК-1000. В блоке размещаются реактор, две конденсационные турбины и два генератора. Высокие рабочие температуры реактора позволяют ему одновременно выполнять функцию парогенератора, благодаря чему и становится возможным использовать одноконтурную схему. Преимуществом последней является сравнительно простой принцип работы, однако ввиду ее особенностей достаточно сложно обеспечить защиту от радиации . Это обусловлено тем, что при применении этой схемы воздействию радиоактивного излучения подвергаются все элементы блока.

Атомные электростанции с двухконтурным реактором:

Двухконтурная схема используется на АЭС с реакторами, относящимися к типу ВВЭР. Принцип работы этих станций следующий: в активную зону реактора под давлением осуществляется подача теплоносителя, в качестве которого выступает вода. Происходит ее нагрев, после чего она поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Радиация излучается только первым контуром, второй не имеет радиоактивных свойств. Устройство блока включает в себя генератор, а также одну или две конденсационных турбины (в первом случае мощность турбины составляет 1000 мегаватт, во втором - 2 х 500 мегаватт).

Передовой разработкой в сфере двухконтурных реакторов выступает модель ВВЭР-1200, предложенная концерном «Росэнергоатом». Она разработана на базе модификаций реактора ВВЭР-1000, которые изготавливались по заказам из-за рубежа в 90-х гг. и в первых годах текущего тысячелетия. В новой модели улучшены все параметры предшественника и предусмотрены дополнительные системы безопасности для снижения риска выхода радиоактивного излучения из герметичного отделения реактора. Новая разработка обладает рядом преимуществ - ее мощность выше на 20% по сравнению с предыдущей моделью, КИУМ достигает 90%, она способна работать в течение полутора лет без перегрузки топлива (обычные сроки составляют 1 год), ее эксплуатационный период равен 60 годам.

Атомные электростанции с трехконтурным реактором:

Трехконтурная схема используется на атомных электростанциях с реакторами типа БН («быстрый натриевый»). Работа таких реакторов основана на быстрых нейтронах, в качестве теплоносителя используется радиоактивный жидкий натрий. Для исключения его контакта с водой в конструкции реактора предусмотрен дополнительный контур, в котором используется натрий без радиоактивных свойств; это обеспечивает трехконтурный тип схемы.

Современный 3-контурный реактор БН-800, разработанный в 80-х – 90-х годах прошлого столетия, обеспечил России передовые позиции в области производства быстрых реакторов. Его ключевой особенностью является защищенность от воздействий, проистекающих изнутри или извне. В этой модели сведен к минимуму риск возникновения аварии, при которой расплавляется активная зона и в ходе переработки облученного ядерного топлива выделяется плутоний.

В рассматриваемом реакторе могут применяться различные виды топлива - обычные с окисью урана или МОКС-топливо на основе урана и

Страница 1 из 3

Атомные электрические станции (АЭС) могут быть конденсационными, теплофикационными (АТЭЦ), а также атомными станциями теплоснабжения (ACT) и атомными станциями промышленного теплоснабжения (ACПT). Атомные станции сооружаются по блочному принципу как в тепловой, так и в электрической части.
Ядерные реакторы АЭС классифицируются по различным признакам. По уровню энергии нейтронов реакторы разделяются на два основных класса: тепловые (на тепловых нейтронах) и быстрые (на быстрых нейтронах). По виду замедлителя нейтронов реакторы бывают водными, тяжеловодными, графитовыми, а по виду теплоносителя - водными, тяжеловодными, газовыми, жидко металлическими. Водоохлаждаемые реакторы классифицируются также по конструктивному исполнению: корпусные и канальные.
С точки зрения организации ремонта оборудования наибольшее значение для АЭС имеет классификация по числу контуров. Число контуров выбирают с учетом требований обеспечения безопасной работы блока при всех возможных аварийных ситуациях. Увеличение числа контуров связано с появлением дополнительных потерь в цикле и соответственно уменьшением КПД АЭС.
В системе любой АЭС различают теплоноситель и рабочее тело. Рабочим телом, т.е. средой, совершающей работу, преобразуя тепловую энергию в механическую, является водяной пар. Назначение теплоносителя на АЭС - отводить теплоту, выделяющуюся в реакторе. Если контуры теплоносителя и рабочего тела не разделены, АЭС называют одноконтурной (рис. 1).

Рис.1. Тепловая схема АЭС:
а - одноконтурная; б - двухконтурная; в - трехконтурная; 1 - реактор; 2 - турбина; 3- турбогенератор; 4- конденсационная установка; 5- конденсатный насос; б - система регенеративного подогрева питательной воды; 7 - питательный насос; 8 - парогенератор; 9 - циркуляционный насос контура реактора; 10 - циркуляционный насос промежуточного контура

В одноконтурных схемах все оборудование работает в радиационно-активных условиях, что осложняет его ремонт. По одноконтурной схеме работают АЭС с реакторами типа РБМК-1000 и РБМК-1500.
Если контуры теплоносителя и рабочего тела разделены, то АЭС называют двухконтурной. Соответственно контур теплоносителя называют первым, а контур рабочего тела - вторым. В таких схемах реактор охлаждается теплоносителем, прокачиваемым через него, и парогенератор - главным циркуляционным насосом. Образованный таким образом контур теплоносителя является радиоактивным, но он включает в себя не все оборудование станции, а лишь его часть. Второй контур включает оборудование, которое работает при отсутствии радиационной активности - это упрощает ремонт оборудования. На двухконтурной станции обязателен парогенератор, который разделяет первый и второй контуры.
По двухконтурной схеме работают АЭС с реакторами типа ВВЭР-440 и ВВЭР-1000. Существуют теплоносители, интенсивно взаимодействующие с паром и водой. Это может создать опасность выброса радиоактивных веществ в обслуживаемые помещения. Таким теплоносителем является, например, жидкий натрий. Поэтому создают дополнительный (промежуточный) контур, для того чтобы даже в аварийных режимах избежать контакта радиоактивного натрия с водой или водяным паром. Такие АЭС называют трехконтурными. По трехкотурной схеме работают АЭС с реакторами типа БН-350 и БН-600.В настоящее время на АЭС в основном установлены энергоблоки мощностью 350 - 1500 МВт с реакторами типа ВВЭР-440, ВВЭР-1000, РБМК-1000, РБМК-1500, БН-350 и БН-600. Основные характеристики реакторов приведены в табл. 1.

Таблица 1. Основные характеристики реакторов АЭС


Параметр

Тип реактора

Водо-водяные

Канальные водо-графи- товые

На быстрых нейтронах

БН-350 БН-600

Тепловая мощность реактора, МВт

Электрическая мощность, МВт

Давление в корпусе реактора, МПа

Давление в барабанах-сепараторах или в парогенераторах, МПа

Расход воды, циркулирующей в реакторе, м3/ч

Кампания реактора, ч

Размер активной зоны, м: диаметр высота

1,5 2,05 1,0 0,75

Топливные кассеты: число кассет число твэлов в кассете

Атомные электростанции, где установлены реакторы: ВВЭР-440 - Ровенская и др.; ВВЭР-1000 - Запорожская, Балаковская, Нововоронежская, Калининская, Южно-Украинская и др.; РБМК-1000 - Ленинградская, Чернобыльская, Курская, Смоленская и др.; РБМК-1500 - Игналинская; БН-350 - Шевченковская; БН-600 - Белоярская.
Водо-водяной энергетический реактор (ВВЭР) - реактор корпусного типа. Замедлитель и теплоноситель - вода под давлением. Рабочее тело на АЭС с реакторами ВВЭР - водяной пар.
Реактор большой мощности кипящий (РБМК) - это канальный реактор, замедлителем в котором служит графит, а теплоносителем - вода и пароводяная смесь.
У реакторов на быстрых нейтронах теплоносителем первого и второго контуров является натрий, тем самым исключается возможность контакта радиоактивного металла с водой. На рис. 2 приведена принципиальная технологическая схема АЭС с ВВЭР. Тепловая энергия из активной зоны реактора 5 в парогенератор 1 переносится водой, циркулирующей под давлением, созданным ГЦН 2. Реактор ВВЭР-1 000 имеет четыре главных циркуляционных контура (на рис. 2 условно показан один контур) и столько же ГЦН.


Рис. 2. Упрощенная технологическая схема АЭС с водо-водяным энергетическим реактором:
1 - парогенератор; 2 - главный циркуляционный насос (ГЦН); 3 - компенсатор объема; 4 - гидроаккумулятор системы аварийного охлаждения; 5 - реактор; 6 - установка спецводоочистки; 7 - насос нормальней подпитки и борного регулирования; 8 - теплообменник и насос охлаждения бассейна выдержки тепловыделяющих элементов (твэлов); 9 - баки аварийного запаса борного раствора системы САОЗ нормальной и повышенной концентрации; 10 - теплообменник расхолаживания реактора; 11 - спринклерные насосы; 12 - насосы аварийного расхолаживания низкого и высокого давления; 13, 15 - аварийный и рабочий насосы подкачки борного концентрата; 14 - бак борного концентрата; 16 - паровая турбина; 17 - сепаратор-пароперегреватель; 18 - быстродействующие редукционные установки (БРУ) сброса пара; 19 - генератор; 20 - маслоохладитель; 21, 22 - газоохладитель и его насос; 23 - насос технической воды; 24 - циркуляционный насос турбины; 25 - конденсатор; 26, 28 - конденсатные насосы первой и второй ступеней; 27- конденсатоочистка; 29 - подогреватель низкого давления; 30 - питательный турбонасос; 31 - пескорезервный питательный электронасос; 32 - насос расхолаживания; 33 - деаэратор; 34 - подогреватель высокого давления; 35 - бак запаса питательной воды; 36 - аварийный питательный насос; 37 - насосы слива теплоносителя I контура

Для поддержания определенного давления пара над уровнем воды в реакторном контуре установлен паровой компенсатор объема 3 с электронагревом, который обеспечивает испарение воды в компенсаторе объема.
Безопасность АЭС обеспечивают системы нормальной эксплуатации, локализующие системы и система аварийного охлаждения активной зоны реактора (САОЗ). Локализующая система и САОЗ должны обеспечить нераспространение радиоактивности вне герметичных помещений АЭС при всех нормальных и аварийных режимах. Аварийное охлаждение реактора обеспечивается тремя независимыми системами. Одна из таких систем состоит из баков аварийного запаса борного раствора 9, теплообменника расхолаживания 10, спринклерного насоса 11, насосов аварийного расхолаживания низкого и высокого давления 12. В случае разгерметизации реакторного контура и небольшой течи включаются насосы 12, подающие борированный раствор в контур. При максимальной проектной аварии (МПА) - разрыве главного циркуляцонного контура и падении давления в реакторе в объем над активной зоной и под нее подается вода из гидроаккумулирующих емкостей 4. Это должно предотвратить закипание воды в реакторе. Одновременно борированная вода подается в спринклерные установки и в реакторный контур. В струях воды спринклерной установки пар конденсируется и предотвращается повышение давления в герметичной оболочке. Стекающая в приямки вода охлаждается в теплообменниках 10 и вторично закачивается в контур и в спринклерные установки до полного охлаждения реактора.
Подпитка первого контура при нормальном режиме осуществляется насосами 7 из деаэратора первого контура. При малых расходах борсодержащая вода подается насосами 13 и 15.
Для охлаждения воды в бассейне перегрузки и выдержки тепловыделяющих элементов (твэлов) имеется теплообменник и насос 8. Насосы 37 необходимы для обеспечения циркуляции охлаждающей жидкости через теплообменник и спецводоочистку.
При помощи системы управления и защиты реактора (СУЗ) осуществляется пуск и останов реактора, вывод и автоматическое поддержание мощности и выравнивание полей энерговыделения по объему активной зоны. Управление и защита реактора осуществляются перемещением в активной зоне реактора поглотителей нейтронов при помощи органов управления.
Технологическая схема второго нерадиоактивного контура АЭС во многом аналогична схеме КЭС.
Конструктивно реакторное отделение с реактором ВВЭР-1000 состоит из герметичной части - оболочки и негерметичной - обстройки. В герметичной части расположено основное оборудование: реактор, парогенератор, ГЦН, компенсатор объема, главные циркуляционные трубопроводы, емкости САОЗ и др. Для обеспечения необходимой степени безопасности оборудование и коммуникации с радиоактивным теплоносителем высокого давления, который при разуплотнении контура дает выход радиоактивных осколков деления наружу, заключены в герметичную оболочку. Оболочка задерживает радиоактивные продукты аварии внутри помещения без ухудшения сверхдопустимого предела радиационной обстановки снаружи оболочки реактора.
В основу компоновки энергоблоков АЭС с реакторами ВВЭР-1000 положен принцип модульной компоновки, т.е. в каждом энергоблоке предусмотрены все системы, обеспечивающие радиационную и ядерную безопасность энергоблока, а также аварийный останов, расхолаживание, отвод остаточных тепловыделений и комплекс послеаварийных мероприятий, независимо от режима работы остальных энергоблоков. Общестанционные системы, необходимые для обеспечения работы энергоблоков в режимах нормальной эксплуатации, выделены в отдельные сооружения АЭС.
Герметичная часть имеет цилиндрическую форму и состоит из двух объемов - верхнего и нижнего, которые соединены по воздуху. Верхняя часть перекрыта сферическим куполом. В верхней части оболочки установлено оборудование реакторной установки, системы очистки теплоносителя первого контура, транспортно-технологическое оборудование и вентиляционные системы.
Нижняя цилиндрическая часть оболочки соосна с верхним цилиндром и опирается на фундаментную плиту реакторного отделения. В этой части смонтированы вентиляционные камеры трубопроводов системы аварийного расхолаживания реактора, системы охлаждения шахты реактора и др.
Негерметичная часть реакторного отделения в плане имеет форму квадрата, который охватывает окружность оболочки. В помещениях смонтированы блочные технологические системы, которые по выполняемому функциональному назначению технологических процессов должны располагаться в зоне строгого режима. Реакторное отделение является зоной строгого режима. В помещениях реакторного отделения возможно воздействие на персонал внешнего 0-„ и-, 7-излучений, загрязнение воздушной среды радиоактивными газами и аэрозолями, загрязнение поверхности строительных конструкций и оборудования радионуклидами или радиоактивными веществами.
На АЭС с реакторами ВВЭР-1000 к помещениям зоны свободного режима относятся: машинный зал, где установлена турбина К-1030- 60/1500 или К-1000-60/1500 и турбогенератор ТВВ-1000-4УЗ, приточный 42 вентиляционный центр, блочные щиты управления и другое оборудование, т.е. помещения, в которых персонал не занят непосредственно на работах с источниками ионизирующих излучений. В зоне свободного режима практически исключается воздействие на персонал ионизирующего излучения.
При оценке уровня радиации в помещениях АЭС основным фактором радиационного воздействия является поток ионизирующих излучений, проникающих за биологическую защиту, в основном поток 7-излучения. Во всех зонах АЭС системы вентиляции обеспечивают допустимые концентрации радиоактивных веществ во вдыхаемом воздухе.

В середине ХХ века лучшие умы человечества упорно трудились сразу над двумя задачами: над созданием атомной бомбы, а также над тем, как можно использовать энергию атома в мирных целях. Так появились первые в мире В чем заключается принцип работы АЭС? И где в мире расположены крупнейшие из этих электростанций?

История и особенности ядерной энергетики

"Энергия - всему голова" - именно так можно перефразировать известную пословицу, учитывая объективные реалии XXI века. С каждым новым витком технического прогресса человечеству необходимо всё большее ее количество. Сегодня энергия "мирного атома" активно используется в экономике и производстве, и не только в энергетике.

Электроэнергия, производимая на так называемых АЭС (принцип работы которых весьма прост по своей сути), широко используется в промышленности, освоении космоса, медицине и сельском хозяйстве.

Ядерной энергетикой называется отрасль тяжелой промышленности, извлекающая тепловую и электроэнергию из кинетической энергии атома.

Когда же появились первые АЭС? Принцип работы подобных электростанций советские ученые изучали еще в 40-х годах. Кстати, параллельно они же изобретали и первую атомную бомбу. Таким образом, атом был одновременно и "мирным", и смертельным.

В 1948 году И. В. Курчатов предложил советскому правительству начать проводить непосредственные работы по извлечению атомной энергии. Двумя годами позже в Советском Союзе (в городе Обнинске Калужской области) начинается строительство самой первой на планете АЭС.

Принцип работы всех схож, а разобраться в нем совсем не трудно. Об этом пойдет речь далее.

АЭС: принцип работы (фото и описание)

В основе работы любой лежит мощная реакция, которая возникает при делении ядра атома. В этом процессе чаще всего участвуют атомы урана-235 или же плутония. Ядро атомов делит нейтрон, попадающий в них извне. При этом возникают новые нейтроны, а также осколки деления, которые имеют огромную кинетическую энергию. Как раз эта энергия и выступает главным и ключевым продуктом деятельности любой атомной станции

Так можно описать принцип работы реактора АЭС. На следующем фото вы можете посмотреть, как он выглядит изнутри.

Выделяют три основных типа ядерных реакторов:

  • канальный реактор высокой мощности (сокращенно - РБМК);
  • водно-водяной реактор (ВВЭР);
  • реактор на быстрых нейтронах (БН).

Отдельно стоит описать принцип работы АЭС в целом. О том, как она работает, речь пойдет в следующей статье.

Принцип работы АЭС (схема)

Работает в определенных условиях и в строго заданных режимах. Кроме (одного или нескольких), в структуру АЭС входят и прочие системы, специальные сооружения и высококвалифицированный персонал. В чем же заключается принцип работы АЭС? Кратко его можно описать следующим образом.

Главный элемент любой АЭС - это ядерный реактор, в котором происходят все основные процессы. О том, что происходит в реакторе, мы писали в предыдущем разделе. (как правило, чаще всего это уран) в виде небольших черных таблеток подается в этот огромный котел.

Энергия, выделяемая во время реакций, происходящих в атомном реакторе, преобразуется в тепло и передается теплоносителю (как правило, это вода). Стоит отметить, что теплоноситель при этом процессе получает и некоторую дозу радиации.

Далее тепло из теплоносителя передается обычной воде (посредством специальных устройств - теплообменников), которая в результате этого закипает. Водяной пар, который при этом образуется, вращает турбину. К последней подсоединен генератор, который и генерирует электрическую энергию.

Таким образом, по принципу действия АЭС - это та же тепловая электростанция. Разница лишь в том, каким способом образуется пар.

География ядерной энергетики

Первая пятерка стран по производству атомной энергии выглядит следующим образом:

  1. Франция.
  2. Япония.
  3. Россия.
  4. Южная Корея.

При этом Соединенные Штаты Америки, вырабатывая в год около 864 миллиардов кВт*час, производят до 20 % всей электроэнергии планеты.

Всего в мире 31 государство эксплуатирует атомные электростанции. Из всех континентов планеты лишь два (Антарктида и Австралия) полностью свободны от атомной энергетики.

На сегодняшний день в мире функционирует 388 ядерных реакторов. Правда, 45 из них уже полтора года не вырабатывали электроэнергию. Большая часть ядерных реакторов расположена в Японии и в США. Полная их география представлена на следующей карте. Зеленым цветом обозначены страны с действующими ядерными реакторами, указано также их общее количество в конкретном государстве.

Развитие ядерной энергетики в разных странах

В целом, по состоянию на 2014 год в развитии ядерной энергетики наблюдается общий спад. Лидерами по строительству новых атомных реакторов являются три страны: это Россия, Индия и Китай. Кроме этого, ряд государств, не имеющих атомных электростанций, планируют построить их в ближайшее время. К таковым можно отнести Казахстан, Монголию, Индонезию, Саудовскую Аравию и ряд стран Северной Африки.

С другой стороны, ряд государств взяли курс на постепенное сокращение числа атомных электростанций. К таким относится Германия, Бельгия и Швейцария. А в некоторых странах (Италия, Австрия, Дания, Уругвай) ядерная энергетика запрещена на законодательном уровне.

Основные проблемы ядерной энергетики

С развитием ядерной энергетики связана одна существенная экологическая проблема. Это так называемое окружающей среды. Так, по мнению многих экспертов, АЭС выделяют больше тепла, нежели такие же по мощности тепловые электростанции. Особо опасно тепловое загрязнение вод, которое нарушает жизни биологических организмов и приводит к гибели многих видов рыб.

Другая острая проблема, связанная с атомной энергетикой, касается ядерной безопасности в целом. Впервые человечество всерьез задумалось об этой проблеме после Чернобыльской катастрофы 1986 года. Принцип работы Чернобыльской АЭС мало чем отличался от такового других атомных электростанций. Однако это не спасло её от крупной и серьезной аварии, повлекшей за собой очень серьезные последствия для всей Восточной Европы.

Причем опасность ядерной энергетики не ограничивается лишь возможными техногенными авариями. Так, большие проблемы возникают с утилизацией ядерных отходов.

Преимущества атомной энергетики

Тем не менее сторонники развития ядерной энергетики называют и явные преимущества работы атомных электростанций. Так, в частности, Всемирная ядерная ассоциация недавно опубликовала свой отчет с весьма интересными данными. Согласно ему, количество человеческих жертв, сопровождающих производство одного гигаватта электроэнергии на АЭС, в 43 раза меньше, чем на традиционных тепловых электростанциях.

Есть и другие, не менее важные, преимущества. А именно:

  • дешевизна производства электроэнергии;
  • экологическая чистота атомной энергетики (за исключением лишь теплового загрязнения вод);
  • отсутствие строгой географической привязки атомных электростанций к крупным источникам топлива.

Вместо заключения

В 1950 году была построена первая в мире АЭС. Принцип работы атомных электростанций заключается в делении атома с помощью нейтрона. В результате этого процесса высвобождается колоссальный объем энергии.

Казалось бы, атомная энергетика - это исключительное благо для человечества. Однако история доказала обратное. В частности, две крупные трагедии - авария на советской Чернобыльской АЭС в 1986 году и авария на японской электростанции Фукусима-1 в 2011 году - продемонстрировали опасность, которую несет в себе "мирный" атом. И многие страны мира сегодня начали задумываться о частичном или даже полном отказе от ядерной энергетики.

Атомные электростанции

Атомные электростанции представляют собой, ядерные установки производящие энергию, соблюдая при этом заданные режимы при определённых условиях. Для этих целей используется определённая проектом территория, где для выполнения поставленных задач используют ядерные реакторы в комплексе с необходимыми системами, устройствами, оборудованием и сооружениями. Для выполнения целевых задач привлекается специализированный персонал.

Все атомные электростанции России

История атомной энергетики у нас в стране и за рубежом

Вторая половина 40 –х гг., ознаменовалась началом работ по созданию первого проекта, предполагающего использование мирного атома для генерации электроэнергии. В 1948 году, И.В. Курчатов, руководствуясь заданием партии и советского правительства, внёс предложение о начале работ по практическому использованию атомной энергии, для вырабатывания электроэнергии.

Спустя два года, в 1950г., неподалёку от посёлка Обнинское, расположенного в Калужской области, был дан старт строительству первой на планете АЭС. Запуск первой в мире промышленной атомной электростанции, мощность которой, составляла 5МВт, состоялся 27.06.1954г. Советский Союз стал первой в мире державой, которой удалось применить атом в мирных целях. Станция была открыта в получившем к тому времени статус города, Обнинске.

Но советские учёные не остановились на достигнутом, ими были продолжены работы в этом направлении, в частности всего четыре года спустя в 1958г., была начата эксплуатация первой очереди Сибирской АЭС. Её мощность в разы превосходила станцию в Обнинске и составляла 100МВт. Но для отечественных учёных и это, не было пределом, по завершению всех работ, проектная мощность станции составила 600МВт.

На просторах Советского Союза, строительство АЭС, приняло по тем временам, массовые масштабы. В том же году, была развёрнута стройка Белоярской АЭС, первая очередь которой, уже в апреле 1964 году снабдила первым потребителей. География строительства атомных станций, опутала своей сетью всю страну, в этом же году запустили первый блок АЭС в Воронеже, его мощность равнялась 210МВт, второй блок запущенный пять лет спустя в 1969 году, мог похвастаться мощностью в 365МВт. бум строительства АЭС, не стихал на протяжении всей советской эпохи. Новые станции, или дополнительные блоки уже построенных, запускались с периодичностью в несколько лет. Так, уже в 1973 году, собственную АЭС, получил Ленинград.

Однако Советская держава не была единственной в мире, кому было под силу осваивать такие проекты. В Великобритании, также не дремали и, понимая перспективность данного направления, активно изучали этот вопрос. Спустя всего два года, поле открытия станции в Обнинске, англичане запустили собственный проект по освоению мирного атома. В 1956г, городке Колдер – Холл британцами была запущенная своя станция, мощность которой, превышала советский аналог и составляла 46МВт. Не отставали и на другом берегу Атлантики, год спустя американцы торжественно запустили в эксплуатацию станцию в Шиппингпорте. Мощность объекта составила 60МВт.

Однако освоение мирного атома таило в себе скрытые угрозы, о которых вскоре узнал весь мир. Первой ласточкой стала крупная авария в Три – Майл – Айленд произошедшая в 1979г., ну а вслед за ней произошла катастрофа поразившая весь мир, в Советском Союзе, в небольшом городе Чернобыле произошла крупномасштабная катастрофа, это случилось в 1986году. Последствия трагедии были невосполнимы, но кроме этого, данный факт, заставил задуматься весь мир о целесообразности использования ядерной энергии в мирных целях.

Мировые светила в данной отрасли, всерьёз задумались о повышении безопасности ядерных объектов. Итогом стало проведение учредительной ассамблеи, которая была организована 15.05.1989г в советской столице. На ассамблее приняли решение о создании Всемирной ассоциации, в которую должны войти все операторы атомных электростанций, её общепризнанной аббревиатурой является WANO. В ходе реализации своих программ, организация планомерно следит за повышением уровня безопасности атомных станций в мире. Однако, несмотря на все приложенные усилия, даже самые современные и на первый взгляд кажущиеся безопасными объёкты, не выдерживают натиска стихий. Именно по причине эндогенной катастрофы, которая проявилась в форме землетрясения и последовавшего за ним цунами в 2011 году произошла авария на станции Фукусима – 1.

Атомный блэкаут

Классификация АЭС

Атомные станции классифицируются по двум признакам, по виду энергии которую они выпускают и по типу реакторов. В зависимости от типа реактора определяется количество вырабатываемой энергии, уровень безопасности, а также то, какое именно сырьё применяется на станции.

По типу энергии, которую производят станции, они делятся на два вида:

Атомные электростанции. Их основной функцией является выработка электрической энергии.

Атомные теплоэлектростанции. За счёт установленных там теплофикационных установок, использующих тепловые потери, которые неизбежны на станции, становится возможен нагрев сетевой воды. Таким образом, данные станции помимо электроэнергии вырабатывают тепловую энергию.

Исследовав множество вариантов, учёные пришли к выводу, что наиболее рациональными являются три их разновидности, которые в настоящее время и применяются во всём мире. Они отличаются по ряду признаков:

  1. Используемое топливо;
  2. Применяемые теплоносители;
  3. Активные зоны, эксплуатируемые для поддержания необходимой температуры;
  4. Тип замедлителей, определяющий снижение скорости нейтронов, которые выделяются при распаде и так необходимые, для поддержки цепной реакции.

Самым распространённым типом, является реактор, использующий в качестве топлива обогащённый уран. В качестве теплоносителя и замедлителя здесь используется обыкновенная или лёгкая вода. Такие реакторы называют лёгководными, их известно две разновидности. В первом, пар служащий для вращения турбин, образуется в активной зоне, называемой кипящим реактором. Во втором, образование пара происходит во внешнем контуре, который связан с первым контуром посредством теплообменников и парогенераторов. Данный реактор, начали разрабатывать в пятидесятых годах прошлого столетия, основой для них, были армейские программы США. Параллельно, примерно в эти же сроки, в Союзе разработали кипящий реактор, в качестве замедлителя у которого, выступал графитовый стержень.

Именно тип реактора с замедлителем данного типа и нашёл применение на практике. Речь идёт о газоохлаждаемом реакторе. Его история началась в конце сороковых, начале пятидесятых годов XX века, первоначально разработки данного типа использовались при производстве ядерного оружия. В связи с этим, для него подходят два вида топлива, это оружейный плутоний и природный уран.

Последним проектом, которому сопутствовал коммерческий успех, стал реактор, где в качестве теплоносителя применяется тяжёлая вода, в качестве топлива используется уже хорошо нам знакомый природный уран. Первоначально, такие реакторы проектировали несколько стран, но в итоге их производство сосредоточилось в Канаде, чему служит причиной, наличие в этой стране массовых залежей урана.

Ториевые АЭС -- энергетика будущего?

История совершенствования типов ядерных реакторов

Реактор первой на планете АЭС, представлял собой весьма разумную и жизнеспособную конструкцию, что и было доказано в ходе многолетней и безупречной работы станции. Среди его составных элементов выделяли:

  1. боковую водную защиту;
  2. кожух кладки;
  3. верхнее перекрытие;
  4. сборный коллектор;
  5. топливный канал;
  6. верхнюю плиту;
  7. графитовую кладку;
  8. нижнюю плиту;
  9. распределительный коллектор.

Основным конструкционным материалом для оболочек ТВЭЛ и технологических каналов была избрана нержавеющая сталь, на тот момент, не было известно о циркониевых сплавах, которые могли бы, подходить по свойствам для работы с температурой 300°С. Охлаждение такого реактора осуществлялось водой, при этом давление под которым она подавалась, составляло 100ат. При этом выделялся пар с температурой 280°С, что является вполне умеренным параметром.

Каналы ядерного реактора были сконструированы таким образом, чтобы была возможность их полностью заменить. Это связано с ограничением ресурса, которое обусловлено временем нахождения топлива в зоне активности. Конструкторы не нашли оснований рассчитывать на то, что конструкционные материалы расположенные в зоне активности под облучением, смогут выработать весь свой ресурс, а именно порядка 30 лет.

Что касается конструкции ТВЭЛ, то было решено принять трубчатый вариант с односторонним механизмом охлаждения

Это уменьшало вероятность того, что продукты деления попадут в контур в случае повреждения ТВЭЛ. Дл регуляции температуры оболочки ТВЭЛ, применили топливную композицию ураномолибденового сплава, который имел вид крупки, диспергированной посредством тепловодной матрицы. Обработанное таким образом ядерное горючее позволило получить высоконадёжные ТВЭЛ. которые были способны работать при высоких тепловых нагрузках.

Примером следующего витка развития мирных ядерных технологий может, послужить печально известная Чернобыльская АЭС. На тот момент технологии, применённые при её строительстве, считались наиболее передовыми, а тип реактора современнейшим в мире. Речь идёт о реакторе РБМК – 1000.

Тепловая мощность одного такого реактора достигала 3200МВт, при этом он располагает двумя турбогенераторами, электрическая мощность которых, достигает 500МВт, таким образом, один энергоблок обладает электрической мощностью 1000МВт. В качестве топлива для РБМК использовалась обогащённая двуокись урана. В исходном состоянии перед началом процесса одна тонна такого топлива содержит порядка 20кг горючего, а именно урана – 235. При стационарной загрузке двуокиси урана в реактор масса вещества составляет 180т.

Но процесс загрузки не представляет собой навал, в реактор помещают тепловыделяющие элементы, уже хорошо нам известные ТВЭЛ. По сути, они являются трубками, для создания которых применён циркониевый сплав. В качестве содержимого, в них помещаются таблетки двуокиси урана, обладающие цилиндрической формой. В зоне активности реактора их помещают в тепловыделяющие сборки, каждая из которых объединяет 18 ТВЭЛ.

Таких сборок в подобном реакторе насчитывается до 1700 штук, и размещаются они в графитовой кладке, где специально для этих целей сконструированы технологические каналы вертикальной формы. Именно в них происходит циркуляция теплоносителя, роль которого, в РМБК, выполняет вода. Водоворот воды происходит при воздействии циркуляционных насосов, коих насчитывается восемь штук. Реактор находится внутри шахты, а графическая кладка находится в цилиндрическом корпусе толщиной в 30мм. Опорой всего аппарата является бетонное основание, под которым находится бассейн – барботер, служащий для локализации аварии.

Третье поколение реакторов использует тяжёлую воду

Основным элементом которой, является дейтерий. Наиболее распространённая конструкция носит название CANDU, она была разработана в Канаде и широко применяется по всему миру. Ядро таких реакторов располагается в горизонтальном положении, а роль нагревательной камеры играют резервуары цилиндрической формы. Топливный канал тянется через всю нагревательную камеру, каждый из таких каналов, обладает двумя концентрическими трубками. Существуют внешняя и внутренняя трубки.

Во внутренней трубке, топливо находится под давлением теплоносителя, что позволяет дополнительно заправлять реактор в процессе работы. Тяжёлая вода с формулой D20 используется в качестве замедлителя. В ходе замкнутого цикла происходит прокачка воды по трубам реактора, содержащего пучки топлива. В результате ядерного деления выделяется тепло.

Цикл охлаждения при использовании тяжёлой воды заключается в прохождении через парогенераторы, где от выделяемого тяжёлой водой тепла закипает обыкновенная вода, в результате чего, образуется пар, выходящий под высоким давлением. Он распределяется обратно в реактор, в результате чего возникает замкнутый цикл охлаждения.

Именно по такому пути, происходило пошаговое совершенствование типов ядерных реакторов, которые использовались и используются в различных странах мира.