Гражданский бпла для бизнеса и личного пользования. Беспилотник: обзор российских и зарубежных беспилотных летательных аппаратов (бпла) Беспилотные летательные аппараты в классификаторе основных

Современные технологии в области обнаружения и развития пожаров на сегодняшний день развиваются очень стремительно. Новейшие разработки могут удивить не только своим внешним видом, к примеру в области тушения и ликвидации последствий стихийных бедствий на сегодняшний день применяют роботизированную технику.

В нашей статье мы расскажем Вам о еще одной принципиально новой технологии которая активно внедряется и используется в современном мире.

Методический план конспект по кнопке СКАЧАТЬ

Беспилотная авиация может найти широкое применение для решения специальных задач, когда использование пилотируемой авиации невозможно или экономически невыгодно:

  • осмотр труднодоступных участков границы,
  • наблюдение за различными участками суши и водной поверхности,
  • определение последствий стихийных бедствий и катастроф,
  • выявление очагов , выполнение поисковых и других работ.

Применение БПЛА позволяет дистанционно, без участия человека и без подвергания его опасности, проводить мониторинг ситуации на достаточно больших территориях в труднодоступных районах при относительной дешевизне.

Типы

По принципу полета все БПЛА можно разделить на 5 групп (первые 4 группы относятся к аппаратам аэродинамического типа):

  • с жестким крылом (БПЛА самолетного типа);
  • с гибким крылом;
  • с вращающимся крылом (БПЛА вертолетного типа);
  • с машущим крылом;
  • аэростатические.

Кроме БПЛА перечисленных пяти групп существуют также различные гибридные подклассы аппаратов, которые по их принципу полета трудно однозначно отнести к какой-либо из перечисленных групп. Особенно много таких БПЛА, которые совмещают качества аппаратов самолетного и вертолетного типов.

С жестким крылом (самолетного типа)

Этот тип аппаратов известен также как БПЛА с жестким крылом. Подъемная сила данных аппаратов создается аэродинамическим способом за счет напора воздуха, набегающего на неподвижное крыло. Аппараты такого типа, как правило, отличаются большой длительностью полета, большой максимальной высотой полета и высокой скоростью.

Существует большое разнообразие подтипов БПЛА самолетного типа, различающихся по форме крыла и фюзеляжа. Практически все схемы компоновки самолета и типы фюзеляжей, которые встречаются в пилотируемой авиации, применимы и в беспилотной.

С гибким крылом

Это дешевые и экономичные летательные аппараты аэродинамического типа, в которых в качестве несущего крыла используется не жесткая, а гибкая (мягкая) конструкция, выполненная из ткани, эластичного полимерного материала или упругого композитного материала, обладающего свойством обратимой деформации. В этом классе БПЛА можно выделить беспилотные моторизованные парапланы, дельтапланы и БПЛА с упруго деформируемым крылом.

Беспилотный моторизованный параплан – аппарат на основе управляемого парашюта-крыла, снабжённый мототележкой с воздушным винтом для автономного разбега и самостоятельного полёта. Крыло обычно имеет форму прямоугольника или эллипса. Крыло может быть мягким, иметь жесткий или надувной каркас. Недостатком беспилотных моторизованных парапланов является трудность управления ими, так как навигационные датчики не имеют жесткой связи с крылом. Ограничение на их применение оказывает также очевидная зависимость от погодных условий.

С вращающимся крылом (вертолетного типа)

Этот тип аппаратов известен также как БПЛА с вращающимся крылом. Часто их называют также – БПЛА с вертикальным взлетом и посадкой. Последнее не совсем корректно, так как в общем случае вертикальный взлет и посадку могут иметь и БПЛА с неподвижным.

Подъемная сила у аппаратов этого типа также создается аэродинамически, но не за счет крыльев, а за счет вращающихся лопастей несущего винта (винтов). Крылья либо отсутствуют вовсе, либо играют вспомогательную роль. Очевидными преимуществами БПЛА вертолетного типа являются способность зависания в точке и высокая маневренность, поэтому их часто используют в качестве воздушных роботов.

С машущим крылом

БПЛА с машущим крылом основаны на бионическом принципе – копировании движений, создаваемых в полете летающими живыми объектами – птицами и насекомыми. Хотя в этом классе БПЛА пока нет серийно выпускаемых аппаратов и практического применения они пока не имеют, во всем мире проводятся интенсивные исследования в этой области. В последние годы появилось большое количество разных интересных концептов малых БПЛА с машущим крылом.

Главные преимущества, которые имеют птицы и летающие насекомые перед существующими типами летательных аппаратов – это их энергоэффективность и маневренность. Аппараты, основанные на имитации движений птиц, получили название орнитоптеров, а аппараты, в которых копируются движения летающих насекомых – энтомоптерами.

Аэростатические

БПЛА аэростатического типа– это особый класс БПЛА, в котором подъемная сила создается преимущественно за счет архимедовой силы, действующей на баллон, заполненный легким газом (как правило, гелием). Этот класс представлен, в основном, беспилотными дирижаблями.

Дирижабль – Л А легче воздуха, представляющий собой комбинацию аэростата с движителем (обычно это винт (пропеллер, импеллер) с электрическим двигателем или ДВС) и системы управления ориентацией. По конструкции дирижабли подразделяются на три основных типа: мягкий, полужёсткий и жёсткий. В дирижаблях мягкого и полужёсткого типа оболочка для несущего газа мягкая, которая приобретает требуемую форму только после закачки в неё несущего газа под определённым давлением.

В дирижаблях мягкого типа неизменяемость внешней формы достигается избыточным давлением несущего газа, постоянно поддерживаемым баллонетами – мягкими ёмкостями, расположенными внутри оболочки, в которые нагнетается воздух. Баллонеты, кроме того, служат для регулирования подъемной силы и управления углом тангажа (дифференцированная откачка/закачка воздуха в баллонеты приводит к изменению центра тяжести аппарата).

Дирижабли полужёсткого типа отличаются наличием в нижней части оболочки жесткой (в большинстве случаев на всю длину оболочки) фермы. В жёстких дирижаблях неизменяемость внешней формы обеспечивается жестким каркасом, обтянутым тканью, а газ находится внутри жёсткого каркаса в баллонах из газонепроницаемой материи. Жесткие дирижабли в беспилотном исполнении пока практически не применяются.

Классификация

Некоторые классы зарубежной классификации отсутствуют в РФ, лёгкие БПЛА в России имеют значительно большую дальность и т. д. Согласно российской классификации, которая ориентирована преимущественно пока только на военное назначение аппаратов.

БПЛА можно систематизировать следующим образом:

  1. Микро– и мини–БПЛА ближнего радиуса действия – взлётная масса до 5 кг, дальность действия до 25-40 км;
  2. Лёгкие БПЛА малого радиуса действия – взлётная масса 5-50 кг, дальность действия 10-70 км;
  3. Лёгкие БПЛА среднего радиуса действия – взлётная масса 50-100 кг, дальность действия 70-150 (250) км;
  4. Средние БПЛА – взлётная масса 100-300 кг, дальность действия 150-1000 км;
  5. Средне-тяжёлые БПЛА – взлётная масса 300-500 кг, дальность действия 70-300 км;
  6. Тяжёлые БПЛА среднего радиуса действия – взлётная масса более 500 кг, дальность действия 70-300 км;
  7. Тяжёлые БПЛА большой продолжительности полёта – взлётная масса более 1500 кг, дальность действия около 1500 км;
  8. Беспилотные боевые самолёты – взлётная масса более 500 кг, дальностью около 1500 км.

Применяемые БПЛА

Гранад ВА-1000

ZALA 421-16E

Для технического оснащения МЧС России беспилотными летательными аппаратами, российскими предприятиями разработано несколько вариантов, рассмотрим некоторые из них:

Это беспилотный самолет большой дальности (рис. 1.) с системой автоматического управления (автопилот), навигационной системой с инерциальной коррекцией (GPS/ГЛОНАСС), встроенной цифровой системой телеметрии, навигационными огнями, встроенным трехосевым магнитометром, модулем удержания и активного сопровождения цели («Модуль AC»), цифровым встроенным фотоаппаратом, цифровым широкополосным видеопередатчиком C-OFDM-модуляции, радиомодемом с приемником спутниковой навигационной системы (СНС) «Диагональ ВОЗДУХ» с возможностью работы без сигнала СНС (радиодальномер) системой самодиагностики, датчиком влажности, датчиком температуры, датчиком тока, датчиком температуры двигательной установки, отцепом парашюта, воздушным амортизатором для защиты целевой нагрузки при посадке и поисковым передатчиком.

Данный комплекс предназначен для ведения воздушного наблюдения в любое время суток на удалении до 50 км с передачей видеоизображения в режиме реального времени. Беспилотный самолет успешно решает задачи по обеспечению безопасности и контролю стратегически важных объектов, позволяет определять координаты цели и оперативно принимать решения по корректировке действий наземных служб. Благодаря встроенному «Модулю АС» БПЛА в автоматическом режиме ведет наблюдение за статичными и подвижными объектами. При отсутствии сигнала СНС – БПЛА автономно продолжит выполнение задания.

Рис. 1. БПЛА ZALA 421-16E

ZALA 421-08M

Выполнен по схеме «летающее крыло» – это беспилотный самолет тактической дальности с автопилотом, имеет подобный набор функций и модулей, что и ZALA 421-16E. Данный комплекс предназначен для оперативной разведки местности на удалении до 15 км с передачей видеоизображения в режиме реального времени. БПЛА ZALA 421-08M выгодно отличается сверхнадежностью, удобством эксплуатации, низкой акустической, визуальной заметностью и лучшими в своем классе целевыми нагрузками.

Данный летательный аппарат не требует специально подготовленной взлетно-посадочной площадки благодаря тому, что взлет совершается за счет эластичной катапульты, осуществляет воздушную разведку при различных метеоусловиях в любое время суток.

Транспортировка комплекса с БЛА ZALA 421-08M к месту эксплуатации может быть осуществлена одним человеком. Легкость аппарата позволяет (при соответствующей подготовке) производить запуск «с рук», без использования катапульты, что делает его незаменимым при решении задач. Встроенный «Модуль АС» позволяет беспилотному самолету в автоматическом режиме вести наблюдение за статичными и подвижными объектами, как на суше, так и на воде.

Рис. 2. БПЛА ZALA 421-08M

ZALA 421-22

Это беспилотный вертолет с восемью несущими винтами, средней дальности действия, со встроенной системой автопилота (рис. 3). Конструкция аппарата складная, выполнена из композитных материалов, что обеспечивает удобство доставки комплекса к месту эксплуатации любым транспортным средством.

Данный аппарат не требует специально подготовленной взлетно- посадочной площадки из-за вертикально-автоматического запуска и посадки, что делает его незаменимым при проведении воздушной разведки в труднодоступных районах.

Успешно применяется для выполнения операций в любое время суток: для поиска и обнаружения объектов, обеспечения безопасности периметров в радиусе до 5 км. Благодаря встроенному «Модулю АС» аппарат в автоматическом режиме ведет наблюдение за статичными и подвижными объектами.

Рис. 3. БПЛА ZALA 421-22

Представляет собой следующее поколение квадрокоптеров DJI. Он способен записывать видео 4K и передавать видеосигнал высокой четкости прямо из коробки. Камера интегрирована в подвес, для максимальной стабильности и весовой эффективности при минимальном размере. При отсутствии GPS сигнала, технология Визуального позиционирования обеспечивает точность зависания.

Функции Phantom 3 Professional

Камера и подвес: Phantom 3 Professional вы снимает 4K видео с частотой до 30 кадров в секунду и делает 12 мегапиксельные фотографии, которые выглядят четче и чище, чем когда-либо. Улучшенный сенсор камеры дает вам большую ясность, низкий уровень шума, и лучшие снимки, чем любая предыдущая летающая камера.

HD Видео Линк: Низкая задержка, HD передача видео, основана на системе DJI Lightbridge.

DJI Intelligent Flight Battery: 4480 mAh DJI Intelligent Flight Battery имеет новые элементы и использует интеллектуальную систему управления батареями.

Полетный контроллер: Полетный контроллер следующего поколения, обеспечивает более надежную работу. Новый самописец сохраняет данные каждого полета, а визуальное позиционирование позволяет при отсутствии GPS точно зависать в одной точке.

ТТХ Phantom 3 Professional

БАС Фантом-3
Вес (с батареей и винтами) 1280 г.
Максимальная скорость набора высоты 5 м/с
Максимальная скорость снижения 3 м/с
Максимальная скорость 16 м/с (при режиме ATTI в безветренную погоду)
Максимальная высота полета 6000 м
Максимальное время полета Приблизительно 23 минуты
Рабочий диапазон температур От – 10° до 40° С
Режим GPS GPS/GLONASS
Подвес
Охват Угол наклона: от – 90° до + 30°
Визуальное позиционирование
Диапазон скоростей < 8 м/с (на высоте 2 метра над землей)
Диапазон высот 30-300 см.
Рабочий диапазон 30-300 см.
Рабочие условия Ярко освещенные (> 15 люкс) поверхности с контурами
Камера
Оптика EXMOR 1/2.3”

Эффективные пиксели: 12,4 млн. (всего пикселей: 12,76 млн.)

Объектив

Угол обзора 94° 20 мм

(эквивалент формата 35 мм) f/2,8

Регулировка ISO 100-3200 (видео) 100-1600 (фото)
Выдержка электронного затвора 8 с. – 1/8000 с.
Максимальный размер изображения 4000×3000
Режимы фотосъемки

Покадровая

Серийная съемка: 3/5/7 кадров

Автоматический экспобрекетинг (АЭБ)

брекетинг кадра 3/5 при вилке 0,7EV

Замедленная съемка

Поддерживаемые форматы карт SD

Максимальная емкость 64 Гб. Требуемый класс скорости: 10 или UHS-1

Режимы видеосъемки

FHD: 1920×1080p 24/25/30/48/50/60 fps

HD: 1280×720p 24/25/30/48/50/60 fps

Максимальная скорость сохранения видео 60 Мб/с
Поддерживаемые форматы файлов

Видео: MP4/MOV (MPEG-4 AVC/H.246)

Рабочий диапазон температур От -10° до 40° С
Пульт дистанционного управления
Рабочая частота 2,400 ГГц – 2,483 ГГц
Дальность передачи 2000 м (вне помещений без наличия препятствий)
Порт вывода видео USB
Рабочий диапазон температур От -10° до 40° С
Батарея 6000 мАч, литий-полимерная 2S
Держатель мобильного устройства Под планшеты и смартфоны
Мощность передатчика (EIRP) ФКС: 20 дБМ; СЕ: 16 дБм
Рабочее напряжение 1,2 А при 7,4 В
Зарядное устройство
Напряжение 17,4 В
Номинальная мощность 57 Вт
Батарея Intelligent Flight (PH3 – 4480 мАч – 15,2 В)
Емкость 4480 мАч
Напряжение 15,2 В
Тип батареи Литий-полимерная 4S
Полный заряд 68 Вт*ч
Вес нетто 365 г
Рабочий диапазон температур От -10° до 40° С
Максимальная мощность зарядки 100 Вт

Функции Inspire 1

Камера и подвес: Запись видео до 4K и фотографии 12-мегапикселей. Присутствует место для установки нейтральных (ND) фильтров для лучшего контроля экспозиции. Новый механизм подвеса, позволяет быстро снять камеру.

HD Видео Линк: Низкая задержка, HD передача видео, это усовершенствованная версия системы DJI Lightbridge. Также существует возможность управление с двух пультов ДУ.

Шасси: Убирающиеся шасси, позволяют камере беспрепятственно делать панорамы.

Аккумулятор DJI Intelligent Flight Battery: 4500 мАч использует интеллектуальную систему управления батареями.

Полетный контроллер: Полетный контроллер следующего поколения, обеспечивает более надежную работу. Новый самописец сохраняет данные каждого полета, и визуальное позиционирование, позволяет при отсутствии GPS точно зависать в одной точке.

Рис. 5. БПЛА Inspire 1

Все характеристики перечисленных выше БПЛА представлены в таблице 1 (кроме Phantom 3 Professional и Inspire 1 так как указаны в тексте)

Обучение на операторов беспилотных летательных аппаратов

ТТХ Inspire 1

БПЛА ZALA 421-16E ZALA 421-16ЕМ ZALA 421-08М ZALA 421-08Ф ZALA 421-16 ZALA 421-04М
Размах крыла БПЛА, мм 2815 1810 810 425 1680 1615
Продолжительность полета, ч(мин) >4 2,5 (80) (80) 4-8 1,5
Длина БПЛА, мм 1020 900 425 635
Скорость, км/ч 65-110 65-110 65-130 65-120 130-200 65-100
Максимальная высота полета, м 3600 3600 3600 3000 3000
Масса целевой нагрузки, кг(г) До 1,5 До 1 (300) (300) До 1

Преимущества

Можно выделить следующие:

  • осуществляют полеты при различных погодных условиях, сложных помехах (порыв ветра, восходящий или нисходящий воздушный поток, попадание БПЛА в воздушную яму, при среднем и сильном тумане, сильном ливне);
  • проводят воздушный мониторинг в труднодоступных и удаленных районах;
  • являются безопасным источником достоверной информации, надежное обследование объекта или подозреваемой территории, с которой исходит угроза;
  • позволяют предотвращать ЧС при регулярном наблюдении;
  • обнаруживают (лесные пожары, ) на ранних стадиях;
  • исключают риск для жизни и здоровья человека.

Беспилотный летательный аппарат предназначен для решения следующих задач:

  • беспилотный дистанционный мониторинг лесных массивов с целью обнаружения лесных пожаров;
  • мониторинг и передача данных по радиоактивному и химическому заражению местности и воздушного пространства в заданном районе;
  • инженерная разведка районов наводнений, и других стихийных бедствий;
  • обнаружение и мониторинг ледовых заторов и разлива рек;
  • мониторинг состояния транспортных магистралей, нефте- и газопроводов, линий электропередач и других объектов;
  • экологический мониторинг водных акваторий и береговой линии;
  • определение точных координат районов ЧС и пострадавших объектов.

Мониторинг осуществляется днем и ночью, в благоприятных и ограниченных метеоусловиях. Наряду с этим беспилотный летательный аппарат обеспечивает поиск потерпевших аварию (катастрофу) технических средств и пропавших групп людей. Поиск проводится по заранее введенному полетному заданию или по оперативно изменяемому оператором маршруту полета. Он оснащен системами наведения, бортовыми радиолокационными комплексами, датчиками и видеокамерами.

Во время полета, как правило, управление беспилотным летательным аппаратом автоматически осуществляется посредством бортового комплекса навигации и управления, в состав которого входят:

  • приемник спутниковой навигации, обеспечивающий прием навигационной информации от систем ГЛОНАСС и GPS;
  • система инерциальных датчиков, обеспечивающая определение ориентации и параметров движения беспилотного летательного аппарата;
  • система датчиков, обеспечивающая измерение высоты и воздушной скорости;
  • различные виды антенн.

Бортовая система связи функционирует в разрешенном диапазоне радиочастот и обеспечивает передачу данных с борта на землю и с земли на борт.

Решаемые задачи

Можно классифицировать на четыре основные группы:

  • обнаружение ЧС;
  • участие в ликвидации ЧС;
  • поиск и спасение пострадавших;
  • оценка ущерба от ЧС.

В таких задачах старший оператор должен оптимальным образом выбрать маршрут, скорость и высоту полета ДПЛА, чтобы охватить район наблюдения за минимальное время или количество пролетов с учетом секторов обзора телевизионной и тепловизионной камер.

При этом необходимо исключать двукратный или многократный пролет одних и тех же мест с целью экономии материальных и людских ресурсов.

Дополнительный материал по кнопке СКАЧАТЬ

Военные беспилотники можно различать по целому ряду признаков. Варианты классификации приведены ниже.

По типу управления

Автономные, не требующие управления человеком-оператором

С дистанционным управлением человеком-оператором

Комбинированные (способные продолжать функционировать оптимальным образом при временной потери связи с оператором).

По дальности действия

сверхмалой дальности - десятки метров

малой дальности - прямая видимость, единицы или десятки километров

средней дальности - сотни километров

большой дальности действия - от нескольких сотен до нескольких тысяч километров беспосадочных перелётов

По рабочим высотам

для работы на сверхмалых высотах (до десятков метров)

для работы на малых высотах (до сотен метров)

для работы на средних высотах (то 10 км)

для работы на больших высотах (свыше 10 км)

По продолжительности полета

сверхмалое - единицы минут

малое - десятки минут

среднее - несколько часов

длительное - до нескольких десятков часов

сверхдлительное - десятки суток беспосадочного полета

По типу старта

наземного старта

с использованием ВПП,

с катапульты,

с вертикальным взлетом,

с трамплина

воздушного старта

без возвращения на материнское воздушное судно

с возвращением на материнское воздушное судно

автожиры

коптеры (мультикоптеры)

тейлситтеры

имитирующие птиц

имитирующие насекомых

По заметности для радаров

малозаметные (невидимки)

По защищенности канала связи/управления

малозащищенные

криптозащищенные

По размерам

сверхмалого типа (до 1 кг)

малого типа (до 4 кг),

среднего типа (десятки килограмм до нескольких сотен кг),

большие (от нескольких сотен кг до нескольких тонн)

По назначению

разведывательные,

с возможностью использования с борта летального оружия, например, ракет

являющиеся летальным оружием, как барражирующие боеприпасы

транспортные,

универсальные, с объединением нескольких функций

По способности к групповым действиям, действиям в составе организованной группы

для индивидуального использования

для использования в составе небольшой группы (однотипных или разнотипных дронов)

для использования в составе группы из нескольких десятков дронов

Выполнение различных задач, как в военной, так и в гражданской сфере, существенной расширяют линейку БЛА, которые можно применять для этой цели. Уже сейчас ясно, что в ближайшем будущем потребуется несколько платформ, с разными типами двигателей и, самое главное, с различным комплектом бортовой аппаратуры.

Можно отметить, что самый многочисленный класс «беспилотников» , на сегодняшний день в России, это электролеты массой до 15 кг. Почти все они способны летать не более 2-х часов , взлетают, как правило, с применением стартовых устройств и садятся, в большинстве случаев, на парашюте. Сравнительно небольшая взлетная масса ограничивает и массу полезной нагрузки, поэтому, большинство из этих БЛА, имеют сменную полезную нагрузку, что само по себе, в этой ситуации, оправдано.

Существует большое количество задач, как в военной, так и в гражданской сфере, которые могут быть успешно решены при использовании таких аппаратов. Эти БЛА должны стоить дешево, применяться малоквалифицированными в летном отношении специалистами, не требовать серьезного обслуживания и быть мобильными без применения спец.транспорта. Наземная часть такой системы должна быть проста и удобна в эксплуатации. Собственно по такому пути и идут большинство разработчиков данных систем. Учитывая малый вес полезной нагрузки, существенно возрастают требования к бортовым датчикам оптического и инфракрасного диапазона. Датчики системы должны выполнять в основном наблюдательные функции и в меньшей степени измерительные.

Для эксплуатации данных систем не нужно создавать специальных подразделений. Высокая степень автоматизации должна позволить эксплуатировать эти системы рядовым специалистам как в военной, так и в гражданской сфере.

Следующей ступенью в классификации применения БЛА, стоит задача создания «беспилотников» для проведения разведки земной поверхности и водной акватории на удалении в 100 км . Для выполнения таких задач должна применяться «беспилотная» техника, способная летать днем и ночью, в простых и сложных метеоусловиях. Видимо такая техника должна быть способна детально обследовать район до 1000 км 2 за один вылет. Это может обеспечить только БЛА, способные летать не менее 10 часов. Удаление в 100 км обуславливается расстоянием прямой радиовидимости с высоты до 3 тыс. м, на котором можно, без ретранслирования сигнала, обеспечить передачу потокового изображения в режиме реального времени. Нетрудно подсчитать, что при полете по прямой, с условием возврата в точку вылета, такой БЛА способен отлететь на расстояние в 600 км. Аппарат способный летать 10 часов будет имеет взлетный вес 100 - 200 кг и, конечно, потребует взлетно-посадочную полосу длиной не менее 300 м, а также обслуживание квалифицированным экипажем. В настоящее время такие аппараты способны взлетать с применением стартовых устройств

Эти БЛА могут входить у военных в состав разведывательного подразделения такого формирования как бригада (быть дневным и ночным зрением бригады), у гражданских специалистов применяться в составе эксплуатирующей его организации. Для Погранвойск ФСБ такие аппараты могут входить в состав такого подразделения как отряд и обеспечивать контроль за значительным участком границы, особенно в условиях высокогорья, в районах крайнего Севера и в условиях охраны морской границы. Передача видео и фотоизображения в реальном масштабе времени позволяет организовать взаимодействие с другими техническими средствами охраны Государственной границы.

Средства наземного обеспечения работы таких комплексов формируются на основе мобильных пунктов управления (МПУ), размещаемых, как правило, на шасси автомобиля, а также из передвижных временных пунктов управления (ПВПУ), размещаемых в местах обеспечения взлета/посадки БЛА. Возможность размещать ПВПУ непосредственно на территории заставы позволяет получать информацию в своей зоне ответственности в режиме реального масштаба времени при пролете БЛА вдоль границы. Учитывая продолжительность полета данных БЛА, можно говорить о том, что одно подразделение БЛА, состоящее из одного-двух комплексов способно контролировать участок границы протяженностью до 1000 км.


Программное обеспечение (ПО) позволяет отображать на мониторе АРМ пилота-оператора видеоизображение с камеры переднего обзора и индицирует телеметрическую информацию. Отображение телеметрической информации выполняется в режиме «индикатор на лобовом стекле», или в режиме «виртуальных приборов». На мониторе также синтезируется положение точек полетного задания и другая пространственная информация, помогающая пилоту контролировать полет БЛА на маршруте.

Рисунок 1: Кадр ПО АРМ пилота-оператора.

ПО АРМ управления полетом БЛА позволяет пилоту-оператору:

-контролировать полет БЛА при выполнении маршрута и посадки;

-изменять полетное задание при выполнении полета в зоне радиовидимости;

-автоматически получать предупреждения о выходе БЛА за пределы установленных ограничений (по скорости полета, крену, тангажу, высоте полета над рельефом местности).

ПО имеет интуитивно понятный интерфейс, предохраняя операторов от возможных ошибок. Модульная архитектура ПО позволяет его настраивать для работы на компьютерах с различными характеристиками, подключении новых органов управления или исполнительных механизмов.

ПО АРМ оператора целевой аппаратуры (наблюдателя)

программный обеспечение беспилотный летательный

ПО АРМ наблюдателя (Рисунок 2) предназначено для поиска цели, захвата и сопровождения цели, выдачи целеуказания. На мониторе отображается видео с поворотной камеры БЛА, информация о направлении камеры, информация о положении центра кадра на местности. Данное ПО позволяет наблюдателю:

-управлять бортовой поворотной оптико-тепловизорной головкой;

-управлять оптическим увеличением камеры;

-определять координаты центра поля обзора или любого объекта в поле обзора;

-обозначать цель, с автоматическим определением ее координат;

-осуществлять захват и сопровождение цели.

Рисунок 2: Кадр ПО АРМ наблюдателя.

ПО обработки и представления видеоинформации

Электронная стабилизация видео применяется в ПО АРМ наблюдателя и обеспечивает:

-улучшение восприятия видео, особенно при наблюдении с большим увеличением, когда эффект дрожания камеры особенно заметен;

-снижение требований к качеству аппаратной стабилизации камеры или полный отказ от применения аппаратной стабилизации, снижая вес и стоимость системы наблюдения;

-увеличение степени сжатия изображений, что позволяет передавать данные на большее расстояние с лучшим качеством.

Телеавтомат сопровождения

Телеавтомат сопровождения предназначен для захвата и сопровождения цели. Телеавтомат обеспечивает автоматическое сопровождение цели в любых реальных условиях: при изменении масштаба, угла обзора объекта, изменении освещенности и контрастности объекта, при периодическом исчезновении объекта из поля зрения.

Точность определения координат объекта

Погрешность определения координат идентифицированного или указанного оператором объекта на изображении определяется совокупностью инструментальных и методических погрешностей.

К инструментальным погрешностям относятся:

-погрешность определения координат и высоты БЛА;

-точность определения углов курса, крена, тангажа БЛА;

-точность синхронизации момента срабатывания затвора камеры с данными навигационной системы БЛА;

-погрешностью определения положения камеры относительно датчиков навигационной системы (центра масс БЛА);

-погрешность определения дисторсии камеры.

На величину методических погрешностей влияют:

-высота полета БЛА над рельефом местности;

-расстояния от позиционируемого объекта (цели) до точки надира (удаление цели);

-сложность рельефа местности.

С учетом приведенных факторов в современной конфигурации БЛА «Дозор»:

Точность определения углов ориентации 0,1º

Точность определения курсового угла

Точность синхронизации 0,1 сек

Дискретность информации ЦКРМ1 угл. сек. (на широте Москвы эквивалентно 80 м)

Паспортная точность приемника ГНСС:

в плановых координатах 10 м

по высоте 20 м

При высоте полета над рельефом 1000 м со скоростью 100 км/ч суммарная ошибка определения координат объекта, расположенного под углом 30º от линии визирования камеры, составит около 200 м (СКО).

Повышение точности может быть достигнуто путем снижения инструментальных погрешностей (применения в составе навигационной системы датчиков более высокой точности), либо за счет использования точной заранее привязанной фотокарты местности, например, космического снимка.

Мы располагаем технологиями привязки, как к 2D-фотокарте, так и к 3D-фотокарте. Средняя точность наложения составит 2-3 пикселя исходной карты, или порядка 5 м.

Склейка и коррекция мозаичного фотоизображения

В результате площадной или протяженной съемки образуется массив фотоснимков высокого разрешения. Каждый фотоснимок имеет координатную привязку по данным навигационной системы БЛА и данные по углам ориентации БЛА в момент производства снимка. Оригинальное ПО позволяет в кратчайший срок после поступления массива снимков в компьютер НПУ произвести в автоматическом режиме:

-коррекцию цвета и яркости снимков;

-одновременную сшивку кадров;

-ортотрансформирование;

-нарезку карты в мозаику.

Производительность работы ПО позволяет обработать 1000 снимков, сделанных фотокамерой 12 Мпикс за 1 час.

Рисунок 4: Склейка съемки протяженного объекта.

Варианты применения

Изложенные выше тактико-технические характеристики БЛА серии «Дозор» и характеристики их бортовых систем позволяют применять БЛА для целей воздушной разведки в качестве авиационной составляющей, обеспечивающей:

-круглосуточное наблюдение поля боя;

-скрытность разведки;

-безопасность личного состава.

Патрулирование

Регулярное патрулирование выполняется по заданному маршруту.

В качестве иллюстрации применения БЛА в пределах радиовидимости построен маршрут патрулирования БЛА вдоль государственной границы РФ с базированием в районе г. Орск (Рисунок 5). При проектировании маршрута учитывалась паспортная дальность командной радиолинии БЛА Дозор-85 (до 100 км). Таким образом, начальный и конечный ППМ удалены от точки взлета (НПУ) соответственно на 65 км и 61 км. Протяженность маршрута патрулирования составляет 135 км, и время в полете при скорости патрулирования 100 км составляет 1ч 30 мин (с учетом кривизны траектории). Учитывая подлетное время со скоростью 150 км/ч, суммарное время на маршруте составит 2 ч 20 мин (общая протяженность маршрута 235 км).

Рисунок 6 воспроизводит маршрут патрулирования, построенный исходя из ограничения максимальной продолжительности полета БЛА. Общая протяженность маршрута составит 615 км (5 ч 30 мин), в том числе протяженность зоны патрулирования 355 км (3 ч 30 мин). Следует подчеркнуть, что, выполняя полетное задание на маршруте предельной эксплуатационной протяженности, БЛА не имеет возможности совершить облет какой-либо точки по команде оператора, находясь вне зоны радиовидимости, и завершить выполнение ПЗ. В зависимости от времени «задержки», маршрут должен быть сокращен, а в конечных ППМ облет района невозможен.

Концентрические окружности радиусами:

·50 км от точки старта примерно соответствуют зоне достижимости в пределах 1 часа с момента поступления боевого распоряжения на применение БЛА

·100 км соответствует 1 ч 15 мин

·200 км - предельный оперативный радиус действия

Рекогносцировка местности

Рисунок 7 иллюстрирует применение БЛА для разведки местности в течение 1 часа на предельной операционной дальности. Предельная удаленность района разведки составляет 350 км. При скорости полета 150 км/ч БЛА достигнет зоны патрулирования за 2 ч 20 мин, может оставаться в зоне в течение 1 часа и вернуться к точке старта. Общая продолжительность полета составит 5 ч. 30 мин.

Рисунок 7

Разведка в горной местности. Учет особенностей рельефа местности

Планирование полета БЛА в горных условиях проводится с использованием цифровых карт рельефа местности (ЦКРМ). Имеющиеся в свободном доступе коммерческие ЦКРМ, полученные по результатам космической съемки, обеспечивают достаточную точность определения высоты рельефа местности в сочетании с точной координатной привязкой.

Опыт применения БЛА «Дозор-90 Э» в горной местности

В 2008 году была проведена опытная эксплуатация комплекса с БЛА «Дозор-90 Э» в интересах Пограничной службы ФСБ РФ (Рисунок 8). В период с 15 по 19 октября совершено 11 полетов БЛА суммарной продолжительностью 5 ч 30 мин. Полеты проводились в дневное время в простых и сложных метеоусловиях, при скорости ветра у поверхности земли: встречный - 15 м/с, боковой - 10 м/с, попутный - 5 м/с. Взлет осуществлялся с площадки, расположенной на высоте 1000 м над уровнем моря, максимальная высота полета БЛА - 3000 м.

В работе БЛА «Дозор-90 Э» показал высокие летные и эксплуатационные качества, все системы комплекса работали штатно.

По результатам полетов составлена фотографическая карта территории полета, вдоль границы РФ (Рисунок 8).

Рисунок 8: посадка БЛА на не подготовленную площадку в районе заставы

Применения БЛА в береговой зоне

Рассматривается сценарий наземного базирования комплекса с БЛА и ведение разведки над морской акваторией на оперативной дальности БЛА.

Штатные оптические средства целевого оборудования БЛА могут применяться для ближней доразведки и идентификации цели.

В настоящее время главной технической составляющей мониторинга обстановки на морских границах являются посты технического наблюдения (ПТН), представляющие собой сеть береговых радиолокационных станций. Дальность обнаружения цели РЛС ПТН составляет до 25 км. Такова же примерно удаленность ПТН одного от другого. Применение БЛА совместно с ПТН позволит:

) существенно повысить дальность обнаружение цели;

) сократить время идентификации цели.

Патрулирование прибрежной зоны

При патрулировании в прибрежной зоне маршрут БЛА прокладывается вдоль береговой линии за пределами дальности действия РЛС ПТН. В дополнение к штатному оборудованию ПТН оснащаются аппаратурой связи с БЛА. Таким образом, при облете маршрута БЛА постоянно находится в контакте с ближайшим ПТН, передавая на него видео и фото информацию.

Одновременно, БЛА способны проводить идентификацию обнаруженной цели с помощью оптических средств наблюдения, приблизившись к цели на близкое расстояние. При этом цель может быть обнаружена, как непосредственно БЛА, так и любым из ПТН данной сети. Во втором случае БЛА по команде оператора осуществляет перелет в заданный район, прервав выполнение маршрута, либо, поднявшись с места базирования.

Разведка удаленных целей

Для ведения разведки удаленных целей, БЛА «Дозор» могут применяться автономно, аналогично применению на предельной оперативной дальности (Рисунок 8).

Работая вне зоны радиовидимости своего НПУ, аппаратура БЛА регистрирует всю информацию целевой аппаратуры в бортовых накопителях. Анализ данных производится после возвращения на базу. В другом варианте информация в реальном времени передается на корабль, находящийся в зоне прямой радиовидимости с БЛА. Таким образом, обнаружение цели и идентификация производится с помощью бортовых оптико-электронных систем наблюдения.

Применение БЛА совместно с дистанционно управляемым катером

Нами прорабатывался вопросы взаимодействия морских и воздушных дистанционных средств для ведения разведки над акваторией морей.

Предлагается следующий алгоритм комплексного применения средств (Рисунок 9):

Рисунок 9: Комплексное применение дистанционных средств разведки.

·совершающий разведывательный полет БЛА обнаруживает цель и по каналу связи с ПТН передает ее координаты на пост управления;

·принимается решение об оказании воздействия;

·в район с заданными координатами направляется дистанционно управляемый катер;

·во время движения катера БЛА продолжает слежение за целью, осуществляя наведение катера;

·достигнув цели, катер осуществляет воздействие на цель с фиксацией координат и времени. Данные в реальном времени транслируются с помощью БЛА на ПТН и на НПУ.

Актуально и использование таких комплексов в борьбе с браконьерами, к примеру, в Астраханских плавнях и в борьбе с наркотрафиком в определенных районах нашей страны.

Наземное оборудование таких комплексов позволяет оператору-дешифровщику производить распознавание целей и выдачу координат найденных объектов с высокой степенью точности. Как использовать полученные координаты решает сам потребитель такой системы.

Покажем на примере комплекса дешифратора, разработанного фирмой «Транзас Вижн», как может происходить этот процесс:

Интеллектуальный комплекс дешифровки изображений

Комплекс предназначен для подключения БЛА, как источника информации, к потребителю.

Комплекс позволяет подключать к потребителю один или несколько БЛА одновременно.

Функции комплекса

Комплекс автоматически выполняет следующие функции:

обработка информации с целью ее визуализации (фото, видео, РСА, телеметрия)

обработка информации с целью получения точного целеуказания

дешифровка изображений

подготовка вариантов формализованных сообщений

выдача потребителю сообщения, выбранного оператором

сохранение поступающей информации в базе данных

запись действий оператора

выдача обработанной информации на любой выбранный потребителем уровень иерархии

Описание работы комплекса

Визуализация

Комплекс отображает всю информацию в геоинформационной среде Transas Globe, позволяющей просматривать растровые и векторные карты, рельеф, 3D и движущиеся объекты в единой 3D форме в произвольном масштабе (до всей Земли включительно).

Телеметрия

Телеметрические данные отображаются в виде трека БЛА и 3D-модели БЛА (с учетом ее ориентации). Одновременно может отображаться полетное задание БЛА.

Фото

Одиночные фотографии могут отображаться:

в ракурсе съемки (просмотр в Transas Globe с точки съемки)

в произвольном ракурсе

Фотография отображается в ортотрасформированном виде, с учетом рельефа.

При указании пикселя фотографии

На фотографию могут автоматически налагаться выбранные оператором слои векторной карты.

Группы фотографии

Группы фотографий могут отображаться:

с наложением по исходным или уточненным телеметрическим данным

в мозаике изображений (сшитая карта)

в виде 3D-карт (через восстановление 3D)

Видео

Видео может отображаться:

в ракурсе съемки (просмотр на Глобусе с точки съемки)

в произвольном ракурсе

Видео отображается в ортотрасформированном виде, с учетом рельефа.

При указании пикселя видео автоматически вычисляются координаты указанной точки поверхности Земли , с учетом телеметрии, дисторсии камеры и рельефа.

На видео могут автоматически налагаться выбранные оператором слои векторной карты а также телеметрическая информация.

Точное целеуказание

Для точного целеуказания применяются следующие методы:

сшивка последовательных кадров

подшивка кадра к фотооснове

сшивка карты

Дешифровка изображений

Для дешифровки изображений применяются следующие методы:

Дешифровка фото и отдельных кадров видео

Распознавание с самообучением

фрактальный анализ

спектральный анализ

поиск по особым точкам

Дешифровка видео

Селекция движущихся целей

сопровождение целей

Дешифровка 3D-карт

Распознавание 3D-форм

Подготовка, выбор и выдача формализованных сообщений

При обнаружении искомого объекта на мониторе оператора выводится изображение объекта, информация о нем (тип объекта, координаты, скорость и т.д.) и варианты действий для найденного типа объекта.

При выборе оператором одного из предложенных системой действий автоматически генерируется формализованное сообщение.

Оператор может также сам инициировать выдачу формализованного сообщения, указав на изображении положение и тип объекта.

Документирование

Вся поступающая информация автоматически архивируется в виде, удобном для быстрого просмотра.

ПО комплекса также автоматически фиксирует в БД все действия оператора и все выданные системой формализованные сообщения.

ПО комплекса может также выдавать все или любую часть поступающей или обработанной информации на вышестоящий уровень системы управления для ее отображения и анализа.

Наземное оборудование таких комплексов позволяет оператору-дешифровщику производить распознавание целей и выдачу координат найденных объектов с высокой степенью точности. Как использовать полученные координаты, решает сам потребитель такой системы .

БЛА «Дозор-100» является развитием БЛА «Дозор-85» в направлении увеличения продолжительности и дальности полета.

Удлинённое крыло позволило повысить летное качество планера и, следовательно, уменьшить расход топлива в крейсерском полете. Таким образом, продолжительность полета БЛА «Дозор-100» увеличилась до 10 часов с большим весом полезной нагрузки.

Система выпуска выхлопных газов скрыта внутри фюзеляжа, чем обеспечивается снижение тепловой заметности в полете и уменьшение шума выхлопных газов.

В последние годы появилось большое количество публикаций по использованию для решения топографических задач беспилотных летательных аппаратов (БПЛА), или беспилотных авиационных систем (БАС). Такой интерес в немалой степени вызван простотой их эксплуатации, экономичностью, относительно невысокой стоимостью, оперативностью и т.д. Перечисленные качества и наличие эффективных программных средств автоматической обработки материалов аэрофотосъемки (включая выбор необходимых точек) открывают возможности широкого использования программно-технических средств беспилотной авиации в практике инженерно-геодезических изысканий.

В этом номере обзором технических средств беспилотной авиации мы открываем серию публикаций о возможностях БПЛА и опыте их использования при полевых и камеральных работах.

Д.П. ИНОЗЕМЦЕВ,руководитель проекта ООО«ПЛАЗ»,г. Санкт-Петербург

БЕСПИЛОТНЫЕ ЛЕТАТЕЛЬНЫЕ АППАРАТЫ: ТЕОРИЯ И ПРАКТИКА

Часть 1. Обзор технических средств

ИСТОРИЧЕСКАЯ СПРАВКА

Беспилотные летательные аппараты появились в связи с необходимостью эффективного решения военных задач - тактической разведки, доставки к месту назначения боевого оружия (бомб, торпед и др.), управления боевыми действиями и пр. И не случайно первым их применением считается доставка австрийскими войсками бомб к осажденной Венеции с помощью воздушных шаров в 1849 году . Мощным импульсом к развитию БПЛА послужило появление радиотелеграфа и авиации, что позволило существенно улучшить их автономность и управляемость.

Так, в 1898 году Никола Тесла разработал и продемонстрировал миниатюрное радиоуправляемое судно, а уже в 1910 году американский военный инженер Чарльз Кеттеринг предложил, построил и испытал несколько моделей беспилотных летательных аппаратов . В 1933 году в Великобритании разработан первый БПЛА

многократного использования, а созданная на его основе радиоуправляемая мишень использовалась в королевском флоте Великобритании до 1943 года.

На несколько десятков лет опередили свое время исследования немецких ученых, давших миру в 1940-х годах реактивный двигатель и крылатую ракету «Фау-1» как первый применявшийся в реальных боевых действиях беспилотный летательный аппарат.

В СССР в 1930–1940 годы авиаконструктором Никитиным был разработан торпедоносец-планер типа «летающее крыло», а к началу 40-х был подготовлен проект беспилотной летающей торпеды с дальностью полета от 100 километров и выше, однако в реальные конструкции эти разработки не превратились.

После окончания Великой Отечественной войны интерес к БПЛА существенно возрос, а начиная с 1960-х годов отмечается их широкое внедрение для решения задач невоенного характера.

В целом историю БПЛА можно условно разделить на четыре временных этапа :

1.1849 год–начало ХХ века - попытки и экспериментальные опыты по созданию БПЛА, формирование теоретических основ аэродинамики, теории полета и расчета самолета в работах ученых.

2.Начало ХХ века - 1945 год - разработка БПЛА военного назначения (самолетов-снарядов с небольшой дальностью и продолжительностью полета).

3.1945–1960 годы - период расширения классификации БПЛА по назначению и создание их преимущественно для разведывательных операций.

4.1960 годы - наши дни - расширение классификации и усовершенствование БПЛА, начало массового использования для решения задач невоенного характера.

КЛАССИФИКАЦИЯ БПЛА

Общеизвестно, что аэрофотосъемка, как вид дистанционного зондирования Земли (ДЗЗ), - это наиболее производительный метод сбора пространственной информации, основа для создания топографических планов и карт, создания трехмерных моделей рельефа и местности. Аэрофотосъемка выполняется как с пилотируемых летательных аппаратов - самолетов, дирижаблей мотодельтапланов и аэростатов, так и с беспилотных летательных аппаратов (БПЛА).

Беспилотные летательные аппараты, как и пилотируемые, бывают самолетного, а также вертолетного типа (вертолеты и мультикоптеры - летательные аппараты с четырьмя и более роторами с несущими винтами). В настоящее время в России не существует общепринятой классификации БПЛА самолетного типа. Missiles.

Ru совместно с порталом UAV.RU предлагает современную классификацию БПЛА самолетного типа , разработанную на основе подходов организации UAV International, но с учетом специфики и ситуации именно отечественного рынка (классы) (табл. 1):

Микро- и мини-БПЛА ближнего радиуса действия. Класс миниатюрных сверхлегких и легких аппаратов и комплексов на их основе с взлетной массой до 5 килограммов начал появляться в России относительно недавно, но уже довольно

широко представлен. Такие БПЛА предназначены для индивидуального оперативного использования на коротких дальностях на удалении до 25–40 километров. Они просты в эксплуатации и транспортировке, вы полняются складными и позиционируются как «носимые», запуск осуществляется, с помощью катапульты или с руки. Сюда относятся: Geoscan 101 , Geoscan 201 , 101ZALA 421-11, ZALA 421-08, ZALA 421-12, Т23 «Элерон», Т25, «Элерон-3», «Гамаюн-3», «Иркут-2М», «Истра-10»,

«БРАТ», «Локон», «Инспектор 101», «Инспектор 201», «Инспектор 301» и др.

Легкие БПЛА малого радиусадействия. К этому классу относятся несколько более крупные аппараты - взлетной массой от 5 до 50 килограммов. Дальность их действия - в пределах 10–120 километров.

Среди них: Geoscan 300, «ГрАНТ», ZALA 421-04, Орлан-10, ПтероСМ , ПтероЕ5 , Т10, «Эле рон-10», «Гамаюн-10», «Иркут-10»,

Т92 «Лотос», Т90 (Т90-11), Т21, Т24, «Типчак» БПЛА-05, БПЛА-07, БПЛА-08.


Легкие БПЛА среднего радиуса действия. Ряд отечественных образцов можно отнести к этому классу БПЛА. Их масса варьируется в пределах 50–100 килограммов. К ним относится: Т92М «Чибис», ZALA 421-09,

«Дозор-2», «Дозор-4», «Пчела-1Т».

Средние БПЛА. Взлетная масса средних БПЛА лежит в диапазоне от 100 до 300 килограммов. Они предназначены для применения на дальностях 150–1000 километров. В этом классе: М850 «Астра», «Бином», Ла-225 «Комар», Т04, Е22М «Берта», «Беркут», «Иркут-200».

Среднетяжелые БПЛА. Этот класс имеют схожую с БПЛА предыдущего класса дальность применения, но обладают несколько большей взлетной массой - от 300 до 500 килограммов.

К этому классу следует отнести: «Колибри», «Данэм», «Дань-Барук», «Аист» («Юлия»), «Дозор-3».

Тяжелые БПЛА среднего радиуса действия. Данный класс включает БПЛА полетной массой от 500 и более килограммов, предназначены для применения на средних дальностях 70–300 километров. В классе тяжлых следующие: Ту-243 «Рейс-Д», Ту-300, «Иркут-850», «Нарт» (А-03).

Тяжелые БПЛА большой продолжительности полета. Достаточно востребованная за рубежом категория беспилотных аппаратов, к которой относятся американские БПЛА Predator, Reaper, GlobalHawk, израильские Heron, Heron TP. В России образцы практически отсутствуют: «Зонд-3M», «Зонд-2», «Зонд-1», беспилотные авиационные системы Сухого («БасС»), в рамках которой создается роботизированный авиационный комплекс (РАК).

Беспилотные боевые самолеты (ББС). В настоящее время в мире активно ведутся работы по созданию перспективных БПЛА, имеющих возможность нести на борту оружие и предназначенных для ударов по наземным и надводным стационарным и подвижным целям в условиях сильного противодействия сил ПВО противника. Они характеризуются дальностью действия около 1500 километров и массой от 1500 килограммов.

На сегодняшний день в России в классе ББС представлено два проекта: «Прорыв-У», «Скат» .

На практике для аэрофотосъемки, как правило, применяются БПЛА весом до 10–15 килограммов (микро-, мини-БПЛА и легкие БПЛА). Это связано с тем, что при увеличении взлетного веса БПЛА растет сложность его разработки и, cоответственно, стоимость, но снижается надежность и безопасность эксплуатации. Дело в том, что при посадке БПЛА выделяется энергия E = mv2 / 2, а чем больше масса аппарата m, тем больше его посадочная скорость v, то есть выделяемая при посадке энергия очень быстро растет с ростом массы. А эта энергия может повредить как сам БПЛА, так и находящееся на земле имущество.

Беспилотный вертолет и мультикоптер лишены этого недостатка. Теоретически, такой аппарат можно посадить со сколь угодно малой скоростью сближения с Землей. Однако беспилотные вертолеты слишком дороги, а коптеры пока не способны летать на большие расстояния, и применяются только для съемки локальных объектов (отдельных зданий и сооружений).

Рис. 1. БПЛА Mavinci SIRIUS Рис. 2. БПЛА Geoscan 101

ПРЕИМУЩЕСТВА БПЛА

Превосходством БПЛА перед пилотируемыми воздушными судами является, прежде всего, стоимость производства работ, а также значительное уменьшение количества регламентных операций. Само отсутствие человека на борту самолета значительно упрощает подготовительные мероприятия для проведения аэрофотосъемочных работ.

Во-первых, не нужен аэродром, даже самый примитивный. Беспилотные летательные аппараты запускаются или с руки, или с помощью специального взлетного устройства - катапульты.

Во-вторых, особенно при использовании электрической двигательной схемы, отсутствует необходимость в квалифицированной технической помощи для обслуживания летательного аппарата, не так сложны мероприятия по обеспечению безопасности на объекте работ.

В-третьих, отсутствует или намного увеличен межрегламентный период эксплуатации БПЛА по сравнению с пилотируемым воздушным судном.

Данное обстоятельство имеет большое значение при эксплуатации аэрофотосъемочного комплекса в удаленных районах нашей страны. Как правило, полевой сезон аэрофотосъемочных работ короток, каждый погожий день необходимо использовать для производства съемки.

УСТРОЙСТВО БПЛА

две основные схемы компоновки БПЛА: классическая (по схеме «фюзеляж+крылья+хвост»), к которой относится, например БПЛА «Орлан-10», Mavinci SIRIUS (рис. 1) и др., и «летающее крыло», к которой относятся Geoscan101 (рис. 2), Gatewing X100 , Trimble UX5 и др.

Основными частями беспилотного аэрофотосъемочного комплекса являются: корпус, двигатель, бортовая система управления (автопилот), наземная система управления (НСУ) и аэрофотосъемочное оборудование.

Корпус БПЛА изготавливают излегкого пластика (например, углепластика или кевлара), чтобы защитить дорогостоящую фотоаппаратуру и средства управления и навигации, а его крылья - из пластика или экструдированного пенополистирола (EPP). Этот материал легок, достаточно прочен и не ломается при ударе. Деформированную деталь из ЕРР зачастую можно восстановить подручными средствами.

Легкий БПЛА с посадкой на парашюте может выдержать несколько сотен полетов без ремонта, который, как правило, включает замену крыльев, элементов фюзеляжа и др. Производители стараются удешевить части корпуса, подверженные износу, чтобы расходы пользователя на поддержа-БПЛА в рабочем состоянии были минимальными.

Надо отметить, что наиболее дорогостоящие элементы аэрофотосъемочного комплекса, наземная система управления, авионика, программное обеспечение, - вообще не подвержены износу.

Силовая установка БПЛА можетбыть бензиновой или электрической. Причем, бензиновый двигатель обеспечит намного более продолжительный полет, так как в бензине, в расчете на килограмм, запасено в 10–15 раз больше энергии, чем мож-но сохранить в самом лучшем аккумуляторе. Однако такая силовая установка сложна, менее надежна и требует значительного времени для подготовки БПЛА к старту. Кроме того, беспилотный летательный аппарат с бензиновым двигателем крайне сложно перевозить к месту работ на самолете. Наконец, он требует от оператора высокой квалификации. Поэтому бензиновый БПЛА имеет смысл применять только в тех случаях, когда необходима очень большая продолжительность полета - для непрерывного мониторинга, для обследования особо удаленных объектов.

Электрическая двигательная установка, напротив, очень нетребовательна к уровню квалификации обслу-живающего персонала. Современные аккумуляторные батареи могут обеспечить длительность непрерывного полета свыше четырех часов. Обслуживание электрического двигателя совсем несложно. Преимущественно это только защита от влаги и грязи, а также проверка напряжения бортовой сети, что осуществляется с наземной системы управления. Зарядка аккумуляторов производится от бортовой сети сопровождающего автомобиля или от автономного электрогенератора. Бесколлекторный электрический двигатель БПЛА практически не изнашивается.

Автопилот -с инерциальной системой (рис. 3) - наиболее важный элемент управления БПЛА.

Автопилот весит всего 20–30 граммов. Но это очень сложное изделие. В автопилоте, кроме мощного процессора, установлено множество датчиков - трехосевые гироскоп и акселерометр (а иногда и магнитометр), ГЛО-НАСС/GPS-приемник, датчик давления, датчик воздушной скорости. С этими приборами беспилотный летательный аппарат сможет летать строго по заданному курсу.

Рис. 3. АвтопилотMicropilot

В БПЛА имеется радиомодем, необходимый для загрузки полетного задания, передачи в наземную систему управления телеметрических данных о полете и текущем местоположении на участке работ.

Наземная система управления

(НСУ) -это планшетный компьютерили ноутбук, оснащенный модемом для связи с БПЛА. Важная часть НСУ - программное обеспечение для планирования полетного задания и отображения хода его выполнения.

Как правило, полетное задание составляется автоматически, по заданному контуру площадного объекта или узловым точкам линейного объекта. Кроме того, существует возможность проектирования полетных маршрутов, исходя из необходимой высоты полета и требуемого разрешения фотоснимков на местности. Для автоматического выдерживания заданной высоты полета есть возможность учесть в полетном задании цифровую модель местности в распространенных форматах.

Во время полета на картографической подложке монитора НСУ отображается положение БПЛА и контуры снимаемых фотографий. Оператор имеет возможность во время выполнения полета оперативно перенацелить БПЛА на другой район посадки и даже оперативно посадить беспилотник с «красной» кнопки наземной системы управления. По команде с НСУ могут быть запланированы и другие вспомогательные операции, например - выброс парашюта.

Кроме обеспечения навигации и обеспечения полета автопилот должен управлять фотоаппаратом, чтобы получать снимки с заданным межкадровым интервалом (как только БПЛА пролетит нужное расстояние от предыдущего центра фотографирования). Если заранее рассчитанный межкадровый интервал не выдерживается стабильно, приходится настраивать время срабатывания затвора с таким расчетом, чтобы даже при попутном ветре продольное перекрытие было достаточным.

Автопилот должен регистрировать координаты центров фотографирования геодезического спутникового приемника ГЛОНАСС/GPS, чтобы программа автоматической обработки снимков смогла построить модель быстро и привязать ее к местности. Требуемая точность определения координат центров фотографирования зависит от технического задания к выполнению аэрофотосъемочных работ.

Аэрофотосъемочное оборудование на БПЛА устанавливается в зависимости от его класса и цели использования.

На микро- и мини-БПЛА устанавливаются компактные цифровые фотокамеры, комплектуемые сменными объективами с постоянным фокусным расстоянием (без трансфокатора или zoom-устройства) весом 300–500 граммов. В качестве таких камер в настоящее время используются фотоаппараты SONY NEX-7

с матрицей 24,3 МП, CANON600D матрицей 18,5 МП и подобные им. Управление срабатыванием затвора и передача сигнала от затвора в спутниковый приемник производится с помощью штатных или незначительно доработанных электрических разъемов фотоаппарата.

На легкие БПЛА малого радиуса действия устанавливаются зеркальные фотокамеры с большим размером светочувствительного элемента, например CanonEOS5D(размер сенсора 36×24 мм) , NikonD800 (матрица 36,8 МП (размер сенсора 35,9×24 мм)), Pentax645D(CCD-сенсор 44×33 мм, матрица 40 МП) и им подобные, весом 1,0–1,5 килограмма.

Рис. 4. Схема размещения аэроснимков (голубые прямоугольники с подписями номеров)

ВОЗМОЖНОСТИ БПЛА

Согласно требованиям документа «Основные положения по аэрофотосъемке, выполняемой для создания и обновления топографических карт и планов» ГКИНП-09-32-80 носитель аэрофотосъемочной аппаратуры должен предельно точно следовать проектному положению маршрутов аэрофотосъемки, выдерживать заданный эшелон (высоту фотографирования), обеспечивать требования по соблюдению предельных отклонений по углам ориентирования фотокамеры - наклон, крен, тангаж. Кроме того, навигационная аппаратура должна обеспечивать точное время срабатывания фотозатвора и определять координаты центров фотографирования.

Выше указывалась аппаратура, интегрированная в автопилот: это микробарометр, датчик воздушной скорости, инерциальная система, навигационная спутниковая аппаратура. По проведен-ным испытаниям (в частности, БПЛА Geoscan101) были установлены следующие отклонения реальных параметров съемки от заданных:

Уклонения БПЛА от оси маршрута - в диапазоне 5–10 метров;

Уклонения высот фотографирования - в диапазоне 5–10 метров;

Колебание высот фотографирования смежных снимков - не более

Возникающие в полете «елочки» (развороты снимков в горизонтальной плоскости) обрабатываются автоматизированной системой фотограмметрической обработки без заметных негативных последствий.

Фотоаппаратура, устанавливаемая на БПЛА, позволяет получить цифровые изображения местности с разрешением лучше 3 сантиметров на один пиксель. Применение коротко-, средне-, и длиннофокусных фотообъективов определяется ха-рактером получаемых готовых мате-риалов: будь это модель рельефа или ортофотоплан. Все расчеты производятся так же, как и в «большой» аэрофотосъемке.

Применение двухчастотной ГЛО-НАСС/GPSспутниковой геодезической системы для определения координат центров снимков позволяет в процессе постобработки получить координаты центров фотографирования с точностью лучше 5 сантиметров, а применение метода PPP(PrecisePointPositioning) - позволяет определять координаты центров снимков без использования базовых станций или на значительном удалении от них.

Конечная обработка материалов аэрофотосъемки может служить объективным критерием оценки качества выполненной работы. Для иллюстрации можно рассмотреть данные об оценке точности фотограмметрической обработки материалов аэрофотосъемки с БПЛА, выполненной в ПО «PhotoScan» (производства фирмы Agisoſt, г. СанктПетербург) по контрольным точкам (табл. 2).

Номера точек

Ошибки по осям координат, м

Абс, пикс

Проекции

(ΔD)2= ΔХ2+ ΔY2+ ΔZ2

ПРИМЕНЕНИЕ БПЛА

В мире, а в последнее время и в России, беспилотные летательные аппараты применяются в геодезических изысканиях при строительстве , для составления кадастровых планов промышленных объектов, транспортной инфраструктуры, поселков, дачных массивов, в маркшейдерском деле для определения объемов горных выработок и отвалов, при учете движения сыпучих грузов в карьерах, портах, горнообогатительных комбинатах, для создания карт, планов и 3D-моделей городов и предприятий.

3. Цепляева Т.П., Морозова О.В. Этапы развития беспилотных летательных аппаратов. М., «Открытые информационные и компьютерные интегрированные технологии», № 42, 2009.

Секретариат ИКАО информировал о намерении использовать материалы работы этих комитетов и групп для формирования позиции ИКАО в определении правил, процедур и требований в отношении безопасной интеграции БЛА в инфраструктуру единого воздушного пространства.

Считается , что требования к процессу эксплуатации БЛА в общем воздушном пространстве должны основываться на следующих основных принципах:

    не должно быть ограничений на доступ БЛА в единое воздушное пространство;

    должна обеспечиваться безопасность полетов пользователей единого воздушного пространства и безопасность населения на уровне, отвечающем требованиям безопасности полетов ВС;

    не должны предъявляться требования о дооборудовании ВС дополнительными системами в целях совместимости с БЛА;

    БЛА должны иметь систему, позволяющую надежно отслеживать и избегать потенциально конфликтные ситуации с ВС;

    производство полетов БЛА следует осуществлять по тем же правилам, что и для ВС.

Для реализации этих принципов предполагается решить ряд задач:

    Определить процедуры безопасной эксплуатации БЛА.

    Установить требования, определяющие порядок использования воздушного пространства БЛА.

    Разработать методику разрешения ПКС между БЛА и ВС в общем воздушном пространстве.

Ряд стран приступил к решению перечисленных выше задач, Франция, Италия, Германия и Швеция развивают свои национальные программы по обеспечению безопасности полетов БЛА.

Пока только США и Канада внедрили в практику УВД выполнение международных полетов гражданских БЛА над открытым морем в зоне ответственности государства или за пределами воздушного пространства, зарезервированного для БЛА. К ним отнесены: метеорологические исследования, аэрофотосъемка, киносъемка, геофизические наблюдения.

Согласно указанным выше принципам следует, что с точки зрения организации воздушного движения (ОрВД) управлять БЛА следует так же, как любыми иными воздушными судами. В принципе, авиадиспетчера не должно интересовать, какое именно судно он наблюдает. Поэтому система навигации и управления БЛА должна соответствовать международным требованиям, применяемым к пилотируемым летательным аппаратам.

1.2 Классификация беспилотных летательных аппаратов.

Одним из важнейших является вопрос классификации БЛА . Основными классификационными признаками являются:

          Назначение:

    многоцелевые;

    целевые (разведывательные, наблюдательные, транспортные).

          Кратность применения:

    многоразовые;

    одноразовые.

          Способ старта БЛА:

    аэродромный старт;

    безаэродромный старт (старт с рампы, платформы, пускового устройства носителя).

          Способ возврата:

    с посадкой на аэродром базирования при помощи шасси;

    свободный спуск на парашюте в заданном районе;

    падение на уловитель;

    возврат на парашюте.

          Область применения:

    ближнего действия – до 25 км;

    малой дальности – до 100 км;

    средней дальности – до 500 км;

    большой дальности – более 500 км.

          Взлетная масса БЛА:

    до 5 кг (класс микро);

    до 25 кг (малый класс);

    25-150 кг (легкий класс);

    150-750 кг (средний класс);

    750 – 15000 кг (тяжелый класс).

          Тип БЛА:

    самолётной схемы;

    вертолетной схемы;

    ракетного заброса;

    с подъемным вентилятором.

Ниже представлена таблица 1 в которой отображена международная классификация БЛА.

Таблица 1.1Классификация БЛА.

Наименование/

Международное обозначение

Взлетный вес, кг

Радиус действия, км

Практическ-ий потолок

Ближнего действия класса 1

Ближнего действия класса 2

Малой дальности/SR

Средней дальности/MR

Средней дальности с большой продолжительностью полёта/ MRE

Маловысотный большой дальности/LADP

Маловысотный большой продолжительностью полёта/LALE

Средне высотный большой продолжительностью полёта/MALE

Высотный большой продолжительностью полёта/HALE

Также общепризнанной в авиации является система классификации разделения БЛА на классы. Выделяют классы БЛА:

    Класс 1. БЛА самолетного типа взлетной массой до 10 кг с электрическим двигателем. Они могут быть использованы в качестве средства оперативного наблюдения в составе стационарных постов охраны или мобильных групп.

    Класс 2. БЛА самолетного типа взлетной массой до 100 кг с двигателем внутреннего сгорания. Они могут быть использованы в качестве средства оперативного наблюдения.

    Класс 3. БЛА самолетного типа взлетной массой до 1000 кг могут привлекаться как для химической обработки больших площадей, так и для оперативной транспортировки грузов.

    Класс 4. БЛА вертолетного типа. Они представляют интерес для мониторинга объектов.

Как для ВС, так и для БЛА особенно важна такая характеристика, как полезная нагрузка. Для выполнения задач дистанционного зондирования и определения координат исследуемых участков местности полезная нагрузка БЛА должна включать следующее оборудование:

    Устройства получения видовой информации;

    Спутниковую навигационную систему (ГЛОНАСС/GPS);

    Устройства радиолинии видовой и телеметрической информации;

    Устройства командно-навигационной радиолинии с антенно- фидерным устройством;

    Устройство обмена командной информацией;

    Устройство информационного обмена;

    Бортовую цифровую вычислительную машину;

    Устройство хранения видовой информации.

Основным недостатком существующей системы классификации БЛА является то, что она не учитывает характеристики наземной инфраструктуры: пункта управления, системы жизнеобеспечения, транспортировки и предполетной подготовки, стартовых и посадочных площадок, а также наличие сети наземных станций и линий их наземной связи.

Очевидно, что не все БЛА из-за ограничений по полезной нагрузке, дальности и высоте полета имеют возможность использовать вышеуказанную типовую аппаратуру для выполнения своих функциональных задач, задач по управлению и навигации БЛА. Поэтому имеет смысл рассмотреть классы БЛА и произвести отбор БЛА, которые могли бы эксплуатировать на высоких широтах в настоящее время.

Исходя из выше изложенного, предлагается следующая классификация БЛА:

    БЛА класса 1 по полезной нагрузке не соответствуют требованиям по установке аппаратуры навигации и управления БЛА. Практически - это радиоуправляемые БЛА. В связи с этим они могут эксплуатироваться только в выделенном воздушном пространстве.

    БЛА класса 2 по полезной нагрузке 100-120 кг соответствуют требованиям по установке аппаратуры навигации и управления БЛА. Дальность и высота полета обеспечивает выполнение основных задач, поставленных перед БЛА в гражданском секторе экономики.

    БЛА класса 3 по полезной нагрузке 150-200 кг соответствуют требованиям по установке аппаратуры навигации и управления БЛА, а также дополнительного оборудования. Дальность полета обеспечивает выполнение основных задач, но требуется развитая структура наземных станций для наблюдения, управления и связи, которая отсутствует на высоких широтах.

Таким образом, в работе рассматриваются вопросы обеспечения безопасности полета в общем воздушном пространстве БЛА класса 2: взлетная масса 500-600 кг, полезная нагрузка 100-120 кг, крейсерская скоростью 130-150 км/час, с дальностью полета, равной прямой радиовидимости. А также рассмотрены перспективы создания инфраструктуры на высоких широтах, для применения БЛА класса 3.